論文の概要: CbLDM: A Diffusion Model for recovering nanostructure from pair distribution function
- arxiv url: http://arxiv.org/abs/2509.01370v1
- Date: Mon, 01 Sep 2025 11:13:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.656788
- Title: CbLDM: A Diffusion Model for recovering nanostructure from pair distribution function
- Title(参考訳): CbLDM:対分布関数からナノ構造を復元する拡散モデル
- Authors: Jiarui Cao, Zhiyang Zhang, Heming Wang, Jun Xu, Ling Lan, Ran Gu,
- Abstract要約: 本稿では,ナノ構造を復元するためにPDFを使用するという課題に焦点をあてる。
条件ベース遅延拡散モデルである深層学習モデルCbLDMを提案する。
- 参考スコア(独自算出の注目度): 13.216313988182213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, the nanostructure inverse problem is an attractive problem that helps researchers to understand the relationship between the properties and the structure of nanomaterials. This article focuses on the problem of using PDF to recover the nanostructure, which this article views as a conditional generation problem. This article propose a deep learning model CbLDM, Condition-based Latent Diffusion Model. Based on the original latent diffusion model, the sampling steps of the diffusion model are reduced and the sample generation efficiency is improved by using the conditional prior to estimate conditional posterior distribution, which is the approximated distribution of p(z|x). In addition, this article uses the Laplacian matrix instead of the distance matrix to recover the nanostructure, which can reduce the reconstruction error. Finally, this article compares CbLDM with existing models which were used to solve the nanostructure inverse problem, and find that CbLDM demonstrates significantly higher prediction accuracy than these models, which reflects the ability of CbLDM to solve the nanostructure inverse problem and the potential to cope with other continuous conditional generation tasks.
- Abstract(参考訳): 現在、ナノ構造逆問題(nanostructure inverse problem)は、ナノ材料の性質と構造との関係を理解するのに役立つ魅力的な問題である。
本稿では, PDF を用いてナノ構造を復元する問題に着目し, 条件生成問題として考察する。
本稿では,条件ベース遅延拡散モデルである深層学習モデルCbLDMを提案する。
原潜拡散モデルに基づいて、拡散モデルのサンプリングステップを低減し、p(z|x)の近似分布である推定条件付き後続分布の前に条件付きを用いてサンプル生成効率を向上させる。
さらに, 距離行列の代わりにラプラシア行列を用いてナノ構造を復元し, 復元誤差を低減する。
最後に、CbLDMをナノ構造逆問題に用いた既存モデルと比較し、CbLDMがナノ構造逆問題と他の連続条件生成タスクに対処する可能性を反映して、これらのモデルよりもはるかに高い予測精度を示すことを示した。
関連論文リスト
- Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
量子離散化拡散確率モデル(QD3PM)を提案する。
これは、指数関数的に大きなヒルベルト空間における拡散と denoising を通じて合同確率学習を可能にする。
本稿では,共同分布学習における量子的優位性を生かして,生成モデルの新たな理論的パラダイムを確立する。
論文 参考訳(メタデータ) (2025-05-08T11:48:21Z) - Propagation of Chaos for Mean-Field Langevin Dynamics and its Application to Model Ensemble [36.19164064733151]
平均場ランゲヴィンダイナミクス (Mean-field Langevin dynamics, MFLD) は、2層ニューラルネットワークにおける雑音勾配勾配の平均場限界を導出した最適化手法である。
最近の研究は、有限粒子による近似誤差が時間的に均一であり、粒子数が増加するにつれて減少することを示している。
本稿では, 粒子近似項から正則化係数への指数的依存を除去する改良されたMFLDのPoC結果を確立する。
論文 参考訳(メタデータ) (2025-02-09T05:58:46Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - On Error Propagation of Diffusion Models [77.91480554418048]
DMのアーキテクチャにおける誤り伝播を数学的に定式化するための理論的枠組みを開発する。
累積誤差を正規化項として適用して誤差伝搬を低減する。
提案した正規化はエラーの伝播を低減し,バニラDMを大幅に改善し,以前のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-08-09T15:31:17Z) - Maximum-likelihood Estimators in Physics-Informed Neural Networks for
High-dimensional Inverse Problems [0.0]
物理インフォームドニューラルネットワーク(PINN)は、逆常微分方程式(ODE)と偏微分方程式(PDE)を解くのに適した数学的足場を証明した。
本研究では,逆PINNを最大自由度推定器(MLE)でフレーム化して,テイラー展開による物理モデル空間への明示的な誤差伝搬を可能にすることを実証する。
論文 参考訳(メタデータ) (2023-04-12T17:15:07Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) は連続正規化フロー(CNF)ファミリーにおける新しい生成モデルのクラスである
MFは、訓練中にODEソルバを介して呼び出しやバックプロパゲートを必要としない。
一般曲面からのサンプリングにおけるフローモデルの利用を初めて実演する。
論文 参考訳(メタデータ) (2021-08-18T09:00:24Z) - Deep neural network enabled corrective source term approach to hybrid
analysis and modeling [0.0]
ハイブリッド分析モデリング(Hybrid Analysis and Modeling, HAM)は、物理に基づくモデリングとデータ駆動モデリングを組み合わせることを目的とした、新しいモデリングパラダイムである。
補正元項アプローチ(CoSTA)のHAMに対する新しいアプローチを導入し、正当化し、実証する。
論文 参考訳(メタデータ) (2021-05-24T20:17:13Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Unifying Theorems for Subspace Identification and Dynamic Mode
Decomposition [6.735657356113614]
本稿では,SID-DMDアルゴリズムを提案する。
我々は,映像データから直接動的モデルを構築することを目的としたケーススタディを用いて,その展開を実証する。
論文 参考訳(メタデータ) (2020-03-16T19:03:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。