論文の概要: Ensemble of Pathology Foundation Models for MIDOG 2025 Track 2: Atypical Mitosis Classification
- arxiv url: http://arxiv.org/abs/2509.02591v2
- Date: Thu, 04 Sep 2025 00:59:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 11:58:39.466574
- Title: Ensemble of Pathology Foundation Models for MIDOG 2025 Track 2: Atypical Mitosis Classification
- Title(参考訳): MIDOG 2025トラック2における病理基盤モデルの組分け:非定型的ミトコンドリア症分類
- Authors: Mieko Ochi, Bae Yuan,
- Abstract要約: 病理基盤モデル(PFM)を大規模病理組織学データセットで事前訓練した。
我々はPFMを補完するために、最先端の畳み込みニューラルネットワークアーキテクチャであるConvNeXt V2を組み込んだ。
我々は,相補的な形態的洞察を統合するために複数のPFMをアンサンブルし,予備評価フェーズデータセット上でバランスの取れた精度を実現した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mitotic figures are classified into typical and atypical variants, with atypical counts correlating strongly with tumor aggressiveness. Accurate differentiation is therefore essential for patient prognostication and resource allocation, yet remains challenging even for expert pathologists. Here, we leveraged Pathology Foundation Models (PFMs) pre-trained on large histopathology datasets and applied parameter-efficient fine-tuning via low-rank adaptation. In addition, we incorporated ConvNeXt V2, a state-of-the-art convolutional neural network architecture, to complement PFMs. During training, we employed a fisheye transform to emphasize mitoses and Fourier Domain Adaptation using ImageNet target images. Finally, we ensembled multiple PFMs to integrate complementary morphological insights, achieving competitive balanced accuracy on the Preliminary Evaluation Phase dataset.
- Abstract(参考訳): 非定型的な数字は、腫瘍の攻撃性に強く関連し、典型的および非定型的な変種に分類される。
したがって、正確な分化は患者の予後や資源配分に不可欠であるが、専門家の病理学者にとっても依然として困難である。
そこで我々は,大規模な病理組織学データセットで事前学習した病理基盤モデル(PFM)を活用し,低ランク適応によるパラメータ効率の微調整を適用した。
さらに、PFMを補完するために、最先端の畳み込みニューラルネットワークアーキテクチャであるConvNeXt V2を組み込んだ。
訓練中は、ImageNetターゲット画像を用いたミトースとフーリエ領域適応を強調するために魚眼変換を用いた。
最後に,複数のPFMをアンサンブルして相補的な形態的洞察を統合し,予備評価フェーズデータセット上での競合平衡精度を実現した。
関連論文リスト
- Foundation Model-Driven Classification of Atypical Mitotic Figures with Domain-Aware Training Strategies [0.0]
MIDOG 2025 Challenge Track2の解として、正常ミオティックフィギュア(NMF)と非定型ミオティックフィギュア(AMF)のバイナリ分類について述べる。
論文 参考訳(メタデータ) (2025-08-29T17:38:33Z) - AdaFusion: Prompt-Guided Inference with Adaptive Fusion of Pathology Foundation Models [35.489916083763426]
本稿では,新しいプロンプト誘導推論フレームワークであるAdaFusionを提案する。
本手法は,多様なモデルからタイルレベルの特徴を圧縮・整列する。
AdaFusionは、分類タスクと回帰タスクの両方にわたって、個々のPFMを一貫して上回っている。
論文 参考訳(メタデータ) (2025-08-07T07:09:31Z) - Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping [1.927195358774599]
大規模なドメイン内データセットの事前トレーニングは、履歴病理基盤モデル(FM)にタスクに依存しないデータ表現を学習する能力を与える。
計算病理学では、スライド全体の自動解析には、スライドのギガピクセルスケールのため、複数のインスタンス学習(MIL)フレームワークが必要である。
本研究は,MIL分類フレームワーク内のパッチレベルの特徴抽出器として,病理組織学的FMを評価するための新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2025-06-23T14:12:16Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - Molecular-driven Foundation Model for Oncologic Pathology [6.922502805825084]
スライドレベルの基盤モデルであるThreadsを導入し、任意のサイズの全スライド画像の普遍的な表現を生成する。
スレッドは47,171ヘマトキシリンとエオシン(H&E)染色組織分画の多モード学習法を用いて事前訓練を行った。
論文 参考訳(メタデータ) (2025-01-28T02:35:02Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
本研究では,様々な生成手法から偽画像を検出することを目的とした,一般化可能な合成画像検出の課題について検討する。
本稿では,FatFormerという新しいフォージェリー適応トランスフォーマー手法を提案する。
提案手法は, 平均98%の精度でGANを観測し, 95%の精度で拡散モデルを解析した。
論文 参考訳(メタデータ) (2023-12-27T17:36:32Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。