論文の概要: Cluster and then Embed: A Modular Approach for Visualization
- arxiv url: http://arxiv.org/abs/2509.03373v1
- Date: Wed, 27 Aug 2025 00:27:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 21:40:46.558724
- Title: Cluster and then Embed: A Modular Approach for Visualization
- Title(参考訳): クラスタと埋め込み: 可視化のためのモジュール的アプローチ
- Authors: Elizabeth Coda, Ery Arias-Castro, Gal Mishne,
- Abstract要約: t-SNE や UMAP などの次元化手法は、潜在的な(相対的な)クラスタ構造を持つデータを可視化するための一般的な手法である。
まず、まずデータをクラスタ化し、次に各クラスタを埋め込み、最後にクラスタを整列してグローバルな埋め込みを得るという、より透明でモジュール化されたアプローチを提案する。
- 参考スコア(独自算出の注目度): 10.3849658049128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dimensionality reduction methods such as t-SNE and UMAP are popular methods for visualizing data with a potential (latent) clustered structure. They are known to group data points at the same time as they embed them, resulting in visualizations with well-separated clusters that preserve local information well. However, t-SNE and UMAP also tend to distort the global geometry of the underlying data. We propose a more transparent, modular approach consisting of first clustering the data, then embedding each cluster, and finally aligning the clusters to obtain a global embedding. We demonstrate this approach on several synthetic and real-world datasets and show that it is competitive with existing methods, while being much more transparent.
- Abstract(参考訳): t-SNE や UMAP などの次元化手法は、潜在的な(相対的な)クラスタ構造を持つデータを可視化するための一般的な手法である。
それらは埋め込みと同時にデータポイントをグループ化することで知られており、その結果、ローカル情報をよく保存するよく区切られたクラスタによる視覚化が実現している。
しかし、t-SNE と UMAP もまた、基礎となるデータのグローバルな幾何学を歪ませる傾向がある。
まず、まずデータをクラスタ化し、次に各クラスタを埋め込み、最後にクラスタを整列してグローバルな埋め込みを得るという、より透明でモジュール化されたアプローチを提案する。
このアプローチをいくつかの合成および実世界のデータセットで実証し、既存の手法と競合するが、より透明であることを示す。
関連論文リスト
- Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images [51.95768218975529]
ハイパースペクトル画像(HSI)の教師なし解析にサブスペースクラスタリングが広く採用されている。
近年のモデル対応深層空間クラスタリング手法では、O(n2)の複雑性を持つ自己表現行列の計算とスペクトルクラスタリングを含む2段階のフレームワークを用いることが多い。
本稿では,HSIクラスタリングを効率的に行うために,局所構造と非局所構造を協調的にキャプチャする,ベース表現に基づく拡張性のあるコンテキスト保存深層クラスタリング手法を提案する。
論文 参考訳(メタデータ) (2025-06-12T16:43:09Z) - Hierarchical clustering with maximum density paths and mixture models [44.443538161979056]
t-NEBは確率的に基底化された階層的クラスタリング法である。
自然な高次元データに対して最先端のクラスタリング性能が得られる。
論文 参考訳(メタデータ) (2025-03-19T15:37:51Z) - ClusterGraph: a new tool for visualization and compression of multidimensional data [0.0]
本稿では,任意のクラスタリングアルゴリズムの出力に付加的なレイヤを提供する。
クラスタリングアルゴリズムから得られたクラスタのグローバルなレイアウトに関する情報を提供する。
論文 参考訳(メタデータ) (2024-11-08T09:40:54Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
クラスタリングは強力で広く使われているデータサイエンスツールです。
本稿では,予測クラスタリングのための一般化最適化フレームワークを定義する。
また,大域的最適化のためにMILP(mixed-integer linear programming)を利用する共同最適化手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T19:56:51Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
マルチビューサブスペースクラスタリング(FGL-MSC)のためのきめ細かいグラフ学習フレームワークを提案する。
主な課題は、クラスタリングタスクに適合する学習グラフを生成しながら、微細な融合重みを最適化する方法である。
8つの実世界のデータセットの実験では、提案されたフレームワークは最先端の手法に匹敵する性能を示している。
論文 参考訳(メタデータ) (2022-01-12T18:00:29Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。