論文の概要: Markov Missing Graph: A Graphical Approach for Missing Data Imputation
- arxiv url: http://arxiv.org/abs/2509.03410v1
- Date: Wed, 03 Sep 2025 15:38:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 21:40:46.577492
- Title: Markov Missing Graph: A Graphical Approach for Missing Data Imputation
- Title(参考訳): Markov Missing Graph: データインプットのグラフ的アプローチ
- Authors: Yanjiao Yang, Yen-Chi Chen,
- Abstract要約: 我々は、無向グラフに基づいて欠落データを暗示するフレームワークであるMarkov missing graph (MMG)を紹介する。
本稿では,PAI 下での柔軟な統計学習パラダイム MMG 計算リスク最小化を提案し,その計算タスクを経験的リスク最小化問題とみなす。
シミュレーション実験により本手法の有効性を示し,実世界のアルツハイマー病データセットを用いてその応用例を示す。
- 参考スコア(独自算出の注目度): 0.6015898117103067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the Markov missing graph (MMG), a novel framework that imputes missing data based on undirected graphs. MMG leverages conditional independence relationships to locally decompose the imputation model. To establish the identification, we introduce the Principle of Available Information (PAI), which guides the use of all relevant observed data. We then propose a flexible statistical learning paradigm, MMG Imputation Risk Minimization under PAI, that frames the imputation task as an empirical risk minimization problem. This framework is adaptable to various modeling choices. We develop theories of MMG, including the connection between MMG and Little's complete-case missing value assumption, recovery under missing completely at random, efficiency theory, and graph-related properties. We show the validity of our method with simulation studies and illustrate its application with a real-world Alzheimer's data set.
- Abstract(参考訳): 我々は、無向グラフに基づいて欠落データを暗示する新しいフレームワークであるMarkov missing graph (MMG)を紹介する。
MMGは条件付き独立関係を利用して局所的に計算モデルを分解する。
そこで本研究では, 可利用情報原則(PAI)を導入し, 関連するすべての観測データの利用をガイドする。
そこで我々は,PAI 下での柔軟な統計学習パラダイム MMG インプットリスク最小化を提案し,その課題を経験的リスク最小化問題として捉えた。
このフレームワークは様々なモデリング選択に適応する。
MMGの理論は、MMGとLittleの完全ケースの欠落値仮定の接続、無作為性、効率性理論、グラフ関連特性の欠落による回復を含む。
シミュレーション実験により本手法の有効性を示し,実世界のアルツハイマー病データセットを用いてその応用例を示す。
関連論文リスト
- Generative Risk Minimization for Out-of-Distribution Generalization on Graphs [71.48583448654522]
本稿では,抽出ではなく,各入力グラフの不変部分グラフを生成するために,GRM (Generative Risk Minimization) という革新的なフレームワークを提案する。
我々は,ノードレベルのOOD一般化とグラフレベルのOOD一般化のために,さまざまな実世界のグラフデータセットに対して広範な実験を行う。
論文 参考訳(メタデータ) (2025-02-11T21:24:13Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
本研究では,(マルチモーダル)自己教師型表現学習のデータ予測タスクにおいて,連続領域における識別確率モデルについて検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
MISが要求する条件付き確率密度の和を近似する新しい非パラメトリック手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - Joint Graph Learning and Model Fitting in Laplacian Regularized
Stratified Models [5.933030735757292]
ラプラシア正規化成層モデル(Laplacian regularized Stratified Model、LRSM)は、サブプロブレムの明示的または暗黙的なネットワーク構造を利用するモデルである。
本稿では,LRSMにおけるグラフ重みの重要性と感度を示し,その感度が任意に大きいことを示す。
本稿では,1つの最適化問題を解くことで,モデルパラメータを適合させながらグラフを共同学習する汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T06:06:29Z) - The m-connecting imset and factorization for ADMG models [10.839217026568784]
非巡回有向混合グラフ(ADMG)モデルはDAGモデルのマージンを特徴づける。
ADMGモデルは、その複雑さと分析のための統計ツールの不足のために、広く使われていない。
我々はADMGによって誘導される独立モデルの代替表現を提供するm-connecting imsetを紹介する。
論文 参考訳(メタデータ) (2022-07-18T22:29:15Z) - Multi-modal Graph Learning for Disease Prediction [35.156975779372836]
マルチモーダルな疾患予測のためのエンドツーエンドマルチモーダルグラフ学習フレームワーク(MMGL)を提案する。
手動でグラフを定義する代わりに、潜在グラフ構造は適応グラフ学習の効果的な方法によって取得される。
2つの疾患予測タスクに関する広範な実験群は、提案したMMGLがより良好な性能を発揮することを示した。
論文 参考訳(メタデータ) (2022-03-11T12:33:20Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach [26.973056364587766]
グラフデータからの異常検出は、ソーシャルネットワーク、金融、eコマースなど、多くのアプリケーションにおいて重要なデータマイニングタスクである。
マルチスケールcONtrastive lEarning(略してANEMONE)を用いた新しいフレームワーク, graph Anomaly dEtection フレームワークを提案する。
グラフニューラルネットワークをバックボーンとして、複数のグラフスケール(ビュー)から情報をエンコードすることで、グラフ内のノードのより良い表現を学習する。
論文 参考訳(メタデータ) (2022-02-11T09:45:11Z) - Model-based Clustering with Missing Not At Random Data [0.8777702580252754]
我々は,MNARデータを含む,非常に一般的なタイプの欠落データを扱うために設計されたモデルベースのクラスタリングアルゴリズムを提案する。
いくつかのMNARモデルについて議論し、不足の原因は、欠落変数自体の値とクラスメンバーシップの両方に依存する。
MNARzと呼ばれる特定のMNARモデルに注目する。
論文 参考訳(メタデータ) (2021-12-20T09:52:12Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
新しいグラフメタ学習フレームワーク - Graph Hallucination Networks (Meta-GHN) を提案する。
新たなロバストネス強化エピソードトレーニングに基づいて、Meta-GHNは、弱いラベル付きデータからクリーンノード表現を幻覚させるメタ学習を行う。
大規模な実験は、既存のグラフメタ学習研究よりもMeta-GHNの方が優れていることを示す。
論文 参考訳(メタデータ) (2021-06-12T22:22:10Z) - Identification of Latent Variables From Graphical Model Residuals [0.0]
本稿では,推定モデルの残差から遅延空間のプロキシを反復的に導出することにより,DAGを推定する際に潜伏空間を制御する新しい手法を提案する。
結果の予測の改善は本質的にカプセル化されており,既成モデルと比較して一定の限界を超えないことを示す。
論文 参考訳(メタデータ) (2021-01-07T02:28:49Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。