論文の概要: Multilinear and Linear Programs for Partially Identifiable Queries in Quasi-Markovian Structural Causal Models
- arxiv url: http://arxiv.org/abs/2509.03548v1
- Date: Tue, 02 Sep 2025 17:51:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 20:21:09.919734
- Title: Multilinear and Linear Programs for Partially Identifiable Queries in Quasi-Markovian Structural Causal Models
- Title(参考訳): 準マルコフ構造因数モデルにおける部分同定可能なクエリの多線形および線形プログラム
- Authors: João P. Arroyo, João G. Rodrigues, Daniel Lawand, Denis D. Mauá, Junkyu Lee, Radu Marinescu, Alex Gray, Eduardo R. Laurentino, Fabio G. Cozman,
- Abstract要約: 因果モデルのクラスにおける部分同定可能なクエリについて検討する。
準マルコフ的非巡回構造因果モデルに着目する。
内因性変数が観測され,その上の分布が知られているシナリオを考察する。
このような状況下では、利子の確率値を正確に計算することは不可能である。
- 参考スコア(独自算出の注目度): 4.091309278105097
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We investigate partially identifiable queries in a class of causal models. We focus on acyclic Structural Causal Models that are quasi-Markovian (that is, each endogenous variable is connected with at most one exogenous confounder). We look into scenarios where endogenous variables are observed (and a distribution over them is known), while exogenous variables are not fully specified. This leads to a representation that is in essence a Bayesian network where the distribution of root variables is not uniquely determined. In such circumstances, it may not be possible to precisely compute a probability value of interest. We thus study the computation of tight probability bounds, a problem that has been solved by multilinear programming in general, and by linear programming when a single confounded component is intervened upon. We present a new algorithm to simplify the construction of such programs by exploiting input probabilities over endogenous variables. For scenarios with a single intervention, we apply column generation to compute a probability bound through a sequence of auxiliary linear integer programs, thus showing that a representation with polynomial cardinality for exogenous variables is possible. Experiments show column generation techniques to be superior to existing methods.
- Abstract(参考訳): 因果モデルのクラスにおける部分同定可能なクエリについて検討する。
準マルコフ的な非巡回構造因果モデル(つまり、各内在変数は少なくとも1つの外在的共創者と結びついている)に焦点を当てる。
内因性変数が観測される場合(およびそれらの上の分布が知られている)、外因性変数が完全に特定されていない場合を考察する。
これは本質的には、根変数の分布が一意に決定されないベイズネットワークの表現につながる。
このような状況下では、利子の確率値を正確に計算することは不可能である。
そこで我々は, 線形計画法, 線形計画法により, 一つの整合成分が絡み合っている場合において, 線形計画法によって解かれた問題である, 厳密な確率境界の計算について検討する。
本稿では,内在変数に対する入力確率を利用して,そのようなプログラムの構築を簡略化するアルゴリズムを提案する。
一つの介入を持つシナリオに対して、列生成を適用して、補助線形整数プログラムの列を通して有界な確率を計算することにより、外因性変数に対する多項式濃度を持つ表現が可能であることを示す。
実験により、カラム生成技術は既存の手法よりも優れていることが示された。
関連論文リスト
- Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
因果発見は、生物学的実験から機械的な洞察を明らかにする可能性がある。
因果グラフを予測するために,大規模合成データに基づいて学習した教師付きモデルを提案する。
我々のアプローチは、発見アルゴリズムの出力の典型的なエラーがデータセット間で比較できるという観察によって実現されている。
論文 参考訳(メタデータ) (2024-02-02T21:57:58Z) - A Heavy-Tailed Algebra for Probabilistic Programming [53.32246823168763]
本稿では,確率変数の尾を解析するための体系的アプローチを提案する。
本稿では,確率型プログラミング言語コンパイラの静的解析(サンプル作成前)において,この手法をどのように利用できるかを示す。
実験結果から,重み付き代数を利用する推論アルゴリズムは,多数の密度モデリングおよび変分推論タスクにおいて優れた性能が得られることを確認した。
論文 参考訳(メタデータ) (2023-06-15T16:37:36Z) - Exact Bayesian Inference on Discrete Models via Probability Generating
Functions: A Probabilistic Programming Approach [7.059472280274009]
離散統計モデルに対する正確なベイズ推定法を提案する。
我々は、離散的かつ連続的なサンプリング、離散的な観察、アフィン関数、(確率的な)分岐、離散的な事象の条件付けをサポートする確率的プログラミング言語を使用する。
我々の推論手法は確実に正確で完全に自動化されている。
論文 参考訳(メタデータ) (2023-05-26T16:09:59Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
本稿では,潜在因果変数を間接的に観察する際の因果表現学習問題について検討する。
目的は、 (i) 未知の線形変換(スケーリングまで)を回復し、 (ii) 潜在変数の下の有向非巡回グラフ(DAG)を決定することである。
論文 参考訳(メタデータ) (2023-01-19T18:39:48Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Probabilistic Kolmogorov-Arnold Network [1.4732811715354455]
本稿では,アレータティック不確実性の場合に出力の確率分布を推定する手法を提案する。
提案手法は, 出力の入力依存確率分布と, 入力による分布型の変化を対象とする。
本手法は任意の回帰モデルに適用できるが, 計算効率のよいモデルの構築につながるため,kansと組み合わせる。
論文 参考訳(メタデータ) (2021-04-04T23:49:15Z) - Flexible mean field variational inference using mixtures of
non-overlapping exponential families [6.599344783327053]
標準平均場変動推論を用いることで、疎性誘導前のモデルに対して妥当な結果が得られないことを示す。
拡散指数族と 0 の点質量の任意の混合が指数族を形成することを示す。
論文 参考訳(メタデータ) (2020-10-14T01:46:56Z) - Tractable Inference in Credal Sentential Decision Diagrams [116.6516175350871]
確率感性決定図は、解離ゲートの入力が確率値によってアノテートされる論理回路である。
我々は、局所確率を質量関数のクレーダル集合に置き換えることができる確率の一般化である、クレーダル感性決定図を開発する。
まず,ノイズの多い7セグメント表示画像に基づく簡単なアプリケーションについて検討する。
論文 参考訳(メタデータ) (2020-08-19T16:04:34Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
多視点問題は潜在変数モデルに直面することができる。
高次元問題と非線形問題は伝統的にカーネルメソッドによって扱われる。
両アプローチを単一モデルにマージすることを提案する。
論文 参考訳(メタデータ) (2020-06-01T14:25:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。