論文の概要: Chest X-ray Pneumothorax Segmentation Using EfficientNet-B4 Transfer Learning in a U-Net Architecture
- arxiv url: http://arxiv.org/abs/2509.03950v1
- Date: Thu, 04 Sep 2025 07:21:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 20:21:10.084797
- Title: Chest X-ray Pneumothorax Segmentation Using EfficientNet-B4 Transfer Learning in a U-Net Architecture
- Title(参考訳): U-Netアーキテクチャにおける効率的なNet-B4トランスファー学習を用いた胸部X線気胸分類
- Authors: Alvaro Aranibar Roque, Helga Sebastian,
- Abstract要約: 胸腔内の空気の異常蓄積である気胸は、検出されていない場合、生命を脅かす可能性がある。
本稿では,U-NetとEfficientNet-B4エンコーダを併用したディープラーニングパイプラインを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pneumothorax, the abnormal accumulation of air in the pleural space, can be life-threatening if undetected. Chest X-rays are the first-line diagnostic tool, but small cases may be subtle. We propose an automated deep-learning pipeline using a U-Net with an EfficientNet-B4 encoder to segment pneumothorax regions. Trained on the SIIM-ACR dataset with data augmentation and a combined binary cross-entropy plus Dice loss, the model achieved an IoU of 0.7008 and Dice score of 0.8241 on the independent PTX-498 dataset. These results demonstrate that the model can accurately localize pneumothoraces and support radiologists.
- Abstract(参考訳): 胸腔内の空気の異常蓄積である気胸は、検出されていない場合、生命を脅かす可能性がある。
胸部X線は第一線診断ツールであるが、小さな症例は微妙である。
本稿では,U-NetとEfficientNet-B4エンコーダを併用したディープラーニングパイプラインを提案する。
データ拡張とバイナリクロスエントロピーとDice損失を組み合わせたSIIM-ACRデータセットでトレーニングされたこのモデルは、独立したPTX-498データセットで0.7008のIoUとDiceスコア0.8241を達成した。
これらの結果は、このモデルが気胸を正確に局在させ、放射線技師を支援できることを証明している。
関連論文リスト
- Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
胸部X線(CXR)に対する胸部骨陰影の抑制は肺疾患の診断を改善することが示唆された。
従来のアプローチは、教師なしの物理的および教師なしのディープラーニングモデルに分類される。
本研究では,(1)空間変換勾配場における物理モデルによる最小化によりGT骨影を除去した2段階のトレーニングペアの生成について,一般化可能かつ効率的なワークフローを提案する。
2) 受信したCXRの高速リブ除去のために,ステージ1データセット上でのネットワークトレーニングをフル教師する。
論文 参考訳(メタデータ) (2023-02-19T23:47:02Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
深層学習モデルは、胸部X線から新型コロナウイルスを識別するために開発された。
オープンソースデータのトレーニングやテストでは,結果は異例です。
データ分析とモデル評価は、人気のあるオープンソースデータセットであるCOVIDxが実際の臨床問題を代表していないことを示している。
論文 参考訳(メタデータ) (2021-09-14T10:59:11Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
疾患のある肺領域は、しばしばCT画像に高密度ゾーンを生成し、損傷した葉を特定するアルゴリズムの実行を制限する。
この影響は、肺葉を分節する機械学習手法の改善を動機づけた。
このアプローチは、放射線科医のロバストなツールとして臨床現場で容易に採用することができる。
論文 参考訳(メタデータ) (2021-05-11T17:10:25Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
本研究では,異なる畳み込みアーキテクチャの後期融合に基づく深層学習手法を提案する。
公開胸部x線画像と機関アーカイブを組み合わせたトレーニングデータセットを4つ構築した。
4つの異なるディープラーニングアーキテクチャをトレーニングし、それらのアウトプットとレイトフュージョン戦略を組み合わせることで、統一されたツールを得ました。
論文 参考訳(メタデータ) (2020-12-23T14:38:35Z) - RespireNet: A Deep Neural Network for Accurately Detecting Abnormal Lung
Sounds in Limited Data Setting [9.175146418979324]
我々は,小型データセットを効率的に利用する新しい手法とともに,単純なCNNベースのモデルを提案する。
我々は4クラス分類における最先端の成績を2.2%改善した。
論文 参考訳(メタデータ) (2020-10-31T05:53:37Z) - FLANNEL: Focal Loss Based Neural Network Ensemble for COVID-19 Detection [61.04937460198252]
正常, 細菌性肺炎, 非ウイルス性肺炎, COVID-19の4型を有する2874例のX線画像データを構築した。
FLANNEL(Focal Loss Based Neural Ensemble Network)を提案する。
FLANNELは、すべての指標において、新型コロナウイルス識別タスクのベースラインモデルを一貫して上回っている。
論文 参考訳(メタデータ) (2020-10-30T03:17:31Z) - The 2ST-UNet for Pneumothorax Segmentation in Chest X-Rays using
ResNet34 as a Backbone for U-Net [4.639643690208542]
本研究では2段階トレーニングシステム (2ST-UNet) を提案する。
まず、トレーニングされたモデルの重みをロードする前に、低い解像度でネットワークをトレーニングし、より高い解像度でネットワークを再トレーニングします。
実験の結果,2段階トレーニングがネットワーク収束の高速化につながることがわかった。
論文 参考訳(メタデータ) (2020-09-06T19:39:05Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - Detection of Coronavirus (COVID-19) Associated Pneumonia based on
Generative Adversarial Networks and a Fine-Tuned Deep Transfer Learning Model
using Chest X-ray Dataset [4.664495510551646]
本稿では, 限られたデータセットに対して, 微調整深層移動学習を施したGANを用いた肺炎胸部X線検出法を提案する。
この研究で使用されるデータセットは、正常と肺炎の2つのカテゴリを持つ5863のX線画像で構成されている。
論文 参考訳(メタデータ) (2020-04-02T08:14:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。