論文の概要: ChronoGraph: A Real-World Graph-Based Multivariate Time Series Dataset
- arxiv url: http://arxiv.org/abs/2509.04449v1
- Date: Thu, 04 Sep 2025 17:59:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 20:21:10.257787
- Title: ChronoGraph: A Real-World Graph-Based Multivariate Time Series Dataset
- Title(参考訳): ChronoGraph: リアルタイムグラフベースの多変量時系列データセット
- Authors: Adrian Catalin Lutu, Ioana Pintilie, Elena Burceanu, Andrei Manolache,
- Abstract要約: ChronoGraphは、実世界のプロダクションから構築されたグラフ構造化多変量時系列予測データセットである。
ChronoGraphは、専門家がアノテートしたインシデントウィンドウを異常ラベルとして提供し、異常検出方法の評価を可能にする。
本稿では,予測モデル,事前訓練された時系列基礎モデル,標準異常検出器にまたがるベースライン結果について報告する。
- 参考スコア(独自算出の注目度): 4.186511632537852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present ChronoGraph, a graph-structured multivariate time series forecasting dataset built from real-world production microservices. Each node is a service that emits a multivariate stream of system-level performance metrics, capturing CPU, memory, and network usage patterns, while directed edges encode dependencies between services. The primary task is forecasting future values of these signals at the service level. In addition, ChronoGraph provides expert-annotated incident windows as anomaly labels, enabling evaluation of anomaly detection methods and assessment of forecast robustness during operational disruptions. Compared to existing benchmarks from industrial control systems or traffic and air-quality domains, ChronoGraph uniquely combines (i) multivariate time series, (ii) an explicit, machine-readable dependency graph, and (iii) anomaly labels aligned with real incidents. We report baseline results spanning forecasting models, pretrained time-series foundation models, and standard anomaly detectors. ChronoGraph offers a realistic benchmark for studying structure-aware forecasting and incident-aware evaluation in microservice systems.
- Abstract(参考訳): 実運用マイクロサービスから構築されたグラフ構造化多変量時系列予測データセットであるChronoGraphを紹介する。
各ノードは、CPU、メモリ、ネットワーク使用パターンをキャプチャし、サービス間の依存関係をエンコードする、システムレベルのパフォーマンスメトリクスの多変量ストリームを出力するサービスである。
主なタスクは、これらの信号の将来の値をサービスレベルで予測することである。
さらに、ChronoGraphは、専門家がアノテートしたインシデントウィンドウを異常ラベルとして提供し、異常検出方法の評価と運用障害時の予測ロバスト性の評価を可能にする。
産業制御システムや交通、空気品質ドメインの既存のベンチマークと比較すると、ChronoGraphは独自に組み合わせている。
(i)多変量時系列
(ii)明示的で機械可読な依存グラフ
三 実在の事件と一致した異常なラベル
本稿では,予測モデル,事前訓練された時系列基礎モデル,標準異常検出器にまたがるベースライン結果について報告する。
ChronoGraphは、マイクロサービスシステムにおける構造対応予測とインシデント対応評価を研究するための、現実的なベンチマークを提供する。
関連論文リスト
- Persistent Homology-induced Graph Ensembles for Time Series Regressions [1.5728609542259502]
永続ホモロジーフィルタに基づくグラフニューラルネットワークのアンサンブルを作成する。
アンサンブルは、注目に基づくルーティング機構を介して、個々の学習者からの信号を集約する。
地震活動予測と交通予測に関する4つの異なる実世界の実験は、我々のアプローチが一本のグラフベースラインを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2025-03-18T13:22:52Z) - Graph-Augmented LSTM for Forecasting Sparse Anomalies in Graph-Structured Time Series [0.0]
本稿では,時系列間の関係グラフをLSTM予測モデルに明示的に統合するグラフ拡張時系列予測手法を提案する。
我々は,Yahoo Webscope S5 異常データセットとMETR-LAトラフィックセンサネットワークの2つのベンチマークデータセットに対するアプローチを評価する。
その結果,F1スコアは最良基準値に対して最大10%向上した。
論文 参考訳(メタデータ) (2025-03-05T18:37:52Z) - Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
本稿では,グラフサブストラクチャから直接学習することで,メッセージパッシングをバイパスする新しいフレームワークであるNeural Graph Pattern Machine(GPM)を紹介する。
GPMはタスク関連グラフパターンを効率的に抽出し、エンコードし、優先順位付けする。
論文 参考訳(メタデータ) (2025-01-30T20:37:47Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Twin Graph-based Anomaly Detection via Attentive Multi-Modal Learning
for Microservice System [24.2074235652359]
我々は,マルチモーダル学習を通じて利用可能なすべてのデータモダリティをシームレスに統合するMSTGADを提案する。
本研究では,異なるモーダル間の相関関係をモデル化するために,空間的および時間的注意機構を備えたトランスフォーマーベースニューラルネットワークを構築した。
これにより、リアルタイムで自動的かつ正確に異常を検出することができる。
論文 参考訳(メタデータ) (2023-10-07T06:28:41Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
グラフニューラルネットワークとマーク付き時間点プロセス(MTPP)を組み合わせた新しいモデルを提案する。
実験では,モデルの精度と訓練効率の両面から,モデルの優れた性能を実証した。
論文 参考訳(メタデータ) (2022-05-21T15:30:25Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach [26.973056364587766]
グラフデータからの異常検出は、ソーシャルネットワーク、金融、eコマースなど、多くのアプリケーションにおいて重要なデータマイニングタスクである。
マルチスケールcONtrastive lEarning(略してANEMONE)を用いた新しいフレームワーク, graph Anomaly dEtection フレームワークを提案する。
グラフニューラルネットワークをバックボーンとして、複数のグラフスケール(ビュー)から情報をエンコードすることで、グラフ内のノードのより良い表現を学習する。
論文 参考訳(メタデータ) (2022-02-11T09:45:11Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Anomaly Detection for Aggregated Data Using Multi-Graph Autoencoder [21.81622481466591]
システムログの異常検出モデルの作成に重点を置いている。
集約されたデータと集約されたイベント間の関係を徹底的に分析する。
本稿では,新しい畳み込みグラフ自動エンコーダモデルMGAEを提案する。
論文 参考訳(メタデータ) (2021-01-11T17:38:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。