論文の概要: Graph-Augmented LSTM for Forecasting Sparse Anomalies in Graph-Structured Time Series
- arxiv url: http://arxiv.org/abs/2503.03729v1
- Date: Wed, 05 Mar 2025 18:37:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:51:29.692391
- Title: Graph-Augmented LSTM for Forecasting Sparse Anomalies in Graph-Structured Time Series
- Title(参考訳): グラフ構造化時系列におけるスパース異常予測のためのグラフ拡張LSTM
- Authors: Sneh Pillai,
- Abstract要約: 本稿では,時系列間の関係グラフをLSTM予測モデルに明示的に統合するグラフ拡張時系列予測手法を提案する。
我々は,Yahoo Webscope S5 異常データセットとMETR-LAトラフィックセンサネットワークの2つのベンチマークデータセットに対するアプローチを評価する。
その結果,F1スコアは最良基準値に対して最大10%向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Detecting anomalies in time series data is a critical task across many domains. The challenge intensifies when anomalies are sparse and the data are multivariate with relational dependencies across sensors or nodes. Traditional univariate anomaly detectors struggle to capture such cross-node dependencies, particularly in sparse anomaly settings. To address this, we propose a graph-augmented time series forecasting approach that explicitly integrates the graph of relationships among time series into an LSTM forecasting model. This enables the model to detect rare anomalies that might otherwise go unnoticed in purely univariate approaches. We evaluate the approach on two benchmark datasets - the Yahoo Webscope S5 anomaly dataset and the METR-LA traffic sensor network - and compare the performance of the Graph-Augmented LSTM against LSTM-only, ARIMA, and Prophet baselines. Results demonstrate that the graph-augmented model achieves significantly higher precision and recall, improving F1-score by up to 10% over the best baseline
- Abstract(参考訳): 時系列データの異常を検出することは、多くの領域において重要なタスクである。
この課題は、異常がスパースであり、データがセンサーやノード間のリレーショナル依存関係と多変量である場合を強化する。
従来の単変量異常検出器は、特にスパース異常設定において、そのようなノード間の依存関係を捉えるのに苦労する。
そこで本稿では,時系列間の関係グラフをLSTM予測モデルに明示的に統合したグラフ拡張時系列予測手法を提案する。
これにより、純粋な単変量アプローチでは気づかない稀な異常を検出することができる。
我々は,Yahoo Webscope S5異常データセットとMETR-LAトラフィックセンサネットワークの2つのベンチマークデータセットに対するアプローチを評価し,グラフ拡張LSTMの性能をLSTMのみ,ARIMA,Prophetベースラインと比較した。
結果から,グラフ拡張モデルによりF1スコアが最大10%向上し,精度とリコールが大幅に向上することが示された。
関連論文リスト
- WaveGNN: Modeling Irregular Multivariate Time Series for Accurate Predictions [3.489870763747715]
実世界の時系列は、しばしば不整合タイムスタンプ、欠落したエントリ、可変サンプリングレートなどの不規則性を示す。
既存のアプローチは、しばしばバイアスを生じさせる計算に頼っている。
本稿では,不規則にサンプリングされた時系列データを埋め込んで正確な予測を行う新しいフレームワークWaveGNNを提案する。
論文 参考訳(メタデータ) (2024-12-14T00:03:44Z) - Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection [8.878898677348086]
多次元時系列異常検出技術は、航空宇宙、水処理、クラウドサービスプロバイダなど、多くの分野において重要な役割を果たす。
高次元および複雑なデータセットにおいて、効果的かつ正確な異常検出を行うことがますます困難になっている。
本稿では,複数変数間の高次マルチホップ相関を明示的に捉えるハイパーグラフに基づく時間グラフ畳み込みネットワークモデルSTGCN_Hyperを提案する。
我々のモデルはデータ中のマルチスケール時系列の特徴と特徴間の依存関係を柔軟に学習し、異常検出の精度、リコール、F1スコアで既存のベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-10-29T17:19:18Z) - Interdependency Matters: Graph Alignment for Multivariate Time Series Anomaly Detection [30.101707763778013]
グラフアライメント(GA)問題として異常検出を再定義するMADGA(MTS Anomaly Detection via Graph Alignment)を提案する。
GAアプローチでは、ノードとエッジの両方を明示的にアライメントし、ノードはワッサーシュタイン距離、エッジはグロモフ=ワッサーシュタイン距離を用いる。
多様な実世界のデータセットの実験は、MADGAの有効性を検証し、異常を検出し、相互依存を区別する能力を示す。
論文 参考訳(メタデータ) (2024-10-11T14:54:08Z) - Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T14:06:30Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - Multivariate Time Series Anomaly Detection via Dynamic Graph Forecasting [0.0]
動的時系列間グラフのリストに基づく時系列異常検出フレームワークDyGraphADを提案する。
中心となる考え方は、シリーズ間関係とシリーズ間時間パターンの正常状態から異常状態へのずれに基づいて異常を検出することである。
実世界のデータセットに関する数値実験により,DyGraphADはベースライン異常検出手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-02-04T01:27:01Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。