論文の概要: KERAG: Knowledge-Enhanced Retrieval-Augmented Generation for Advanced Question Answering
- arxiv url: http://arxiv.org/abs/2509.04716v1
- Date: Fri, 05 Sep 2025 00:06:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-08 14:27:25.431764
- Title: KERAG: Knowledge-Enhanced Retrieval-Augmented Generation for Advanced Question Answering
- Title(参考訳): KERAG: 高度な質問応答のための知識強化検索生成
- Authors: Yushi Sun, Kai Sun, Yifan Ethan Xu, Xiao Yang, Xin Luna Dong, Nan Tang, Lei Chen,
- Abstract要約: 検索型拡張生成(RAG)は大規模言語モデル(LLM)における幻覚を緩和する
我々はKGをベースとした新しいRAGパイプラインであるKERAGについて述べる。
実験の結果、KERAGは最先端のソリューションを約7%上回り、GPT-4o(Tool)を10-21%上回ることがわかった。
- 参考スコア(独自算出の注目度): 26.051374461832964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) mitigates hallucination in Large Language Models (LLMs) by incorporating external data, with Knowledge Graphs (KGs) offering crucial information for question answering. Traditional Knowledge Graph Question Answering (KGQA) methods rely on semantic parsing, which typically retrieves knowledge strictly necessary for answer generation, thus often suffer from low coverage due to rigid schema requirements and semantic ambiguity. We present KERAG, a novel KG-based RAG pipeline that enhances QA coverage by retrieving a broader subgraph likely to contain relevant information. Our retrieval-filtering-summarization approach, combined with fine-tuned LLMs for Chain-of-Thought reasoning on knowledge sub-graphs, reduces noises and improves QA for both simple and complex questions. Experiments demonstrate that KERAG surpasses state-of-the-art solutions by about 7% in quality and exceeds GPT-4o (Tool) by 10-21%.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG)は、外部データを組み込んだLLM(Large Language Models)の幻覚を緩和し、知識グラフ(KG)は質問応答の重要な情報を提供する。
従来の知識グラフ質問回答法(KGQA)は意味解析に依存しており、解答生成に必要な知識を厳密に取り出すのが一般的である。
我々はKGをベースとした新しいRAGパイプラインであるKERAGについて述べる。
我々の検索・フィルタリング・要約手法は、知識サブグラフに基づく連鎖推論のための微調整LDMと組み合わせて、ノイズを低減し、単純な質問と複雑な質問の両方に対してQAを改善する。
実験の結果、KERAGは最先端のソリューションを約7%上回り、GPT-4o(Tool)を10-21%上回ることがわかった。
関連論文リスト
- DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router [57.28685457991806]
DeepSieveはエージェントRAGフレームワークで、LLM-as-a-knowledge-routerを介して情報を収集する。
我々の設計はモジュール性、透明性、適応性を重視しており、エージェントシステム設計の最近の進歩を活用している。
論文 参考訳(メタデータ) (2025-07-29T17:55:23Z) - Question-Aware Knowledge Graph Prompting for Enhancing Large Language Models [51.47994645529258]
本稿では,問合せをGNNアグリゲーションに組み込んでKG関連性を動的に評価するQAP(QA-Aware Knowledge Graph Prompting)を提案する。
実験の結果、QAPは複数のデータセットで最先端の手法よりも優れており、その有効性を強調している。
論文 参考訳(メタデータ) (2025-03-30T17:09:11Z) - Multiple Abstraction Level Retrieve Augment Generation [4.516242893120263]
大規模言語モデル(LLM)を利用した検索型拡張生成(RAG)モデルは、新しいデータや知識に適応するためのより高速でコスト効率の高いソリューションを提供する。
本稿では,多文レベル,段落レベル,セクションレベル,文書レベルを含む,複数抽象レベル(MAL)のチャンクを用いた新しいRAG手法を提案する。
従来の単一レベルRAGアプローチと比較して,Glyco関連論文では,AIによるQ/A回答の正当性の評価が25.739%向上した。
論文 参考訳(メタデータ) (2025-01-28T13:49:39Z) - RAG-based Question Answering over Heterogeneous Data and Text [23.075485587443485]
本稿では,非構造化テキスト,構造化テーブル,知識グラフに対する質問応答システムについて述べる。
システムはRAGベースのアーキテクチャを採用し、証拠検索のパイプラインと応答生成、そして後者は中程度の言語モデルによって駆動される。
3つの異なるベンチマークによる実験は、我々のアプローチの高い応答品質を示し、大きなGPTモデルと同等かそれ以上である。
論文 参考訳(メタデータ) (2024-12-10T11:18:29Z) - ELOQ: Resources for Enhancing LLM Detection of Out-of-Scope Questions [52.33835101586687]
本研究では,検索した文書が意味的に類似しているように見えるスコープ外質問について検討するが,答えるために必要な情報がない。
本稿では,閉経後の文書から多様なスコープ外質問を自動的に生成するための,幻覚に基づくELOQを提案する。
論文 参考訳(メタデータ) (2024-10-18T16:11:29Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG)は質問応答のための大規模言語モデル(LLM)における事実誤りと幻覚を緩和する
我々は、ノート中心の適応検索により、知識ソースの奥深くで堅牢な探索を実現する適応RAGフレームワークであるDeepNoteを開発した。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - CoTKR: Chain-of-Thought Enhanced Knowledge Rewriting for Complex Knowledge Graph Question Answering [33.89497991289916]
そこで本研究では,新たな書込み手法であるCoTKRを提案し,推論トレースとそれに対応する知識をインターリーブ方式で生成する。
我々は,様々な知識グラフ質問回答 (KGQA) ベンチマークを用いて,様々な言語モデル (LLM) を用いて実験を行う。
論文 参考訳(メタデータ) (2024-09-29T16:08:45Z) - FusionMind -- Improving question and answering with external context
fusion [0.0]
事前学習言語モデル(LM)と知識グラフ(KG)を用いて,文脈知識が質問応答目標(QA)に与える影響を検討した。
知識事実のコンテキストを取り入れることで、パフォーマンスが大幅に向上することがわかった。
このことは、文脈的知識事実の統合が、質問応答のパフォーマンスを高める上でより影響があることを示唆している。
論文 参考訳(メタデータ) (2023-12-31T03:51:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。