論文の概要: SpiderNets: Estimating Fear Ratings of Spider-Related Images with Vision Models
- arxiv url: http://arxiv.org/abs/2509.04889v1
- Date: Fri, 05 Sep 2025 08:10:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-08 14:27:25.519497
- Title: SpiderNets: Estimating Fear Ratings of Spider-Related Images with Vision Models
- Title(参考訳): スパイダーネット:視覚モデルを用いたスパイダー関連画像のフィアレーティング推定
- Authors: Dominik Pegler, David Steyrl, Mengfan Zhang, Alexander Karner, Jozsef Arato, Frank Scharnowski, Filip Melinscak,
- Abstract要約: 訓練済みのコンピュータビジョンモデルがクモ関連画像から恐怖レベルを正確に予測できるかどうかを検討した。
我々は,313画像の標準化データセットから,トランスファーラーニングを用いた3つの多様なモデルを用いて,人間の恐怖評価を予測した。
- 参考スコア(独自算出の注目度): 34.53857780610265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in computer vision have opened new avenues for clinical applications, particularly in computerized exposure therapy where visual stimuli can be dynamically adjusted based on patient responses. As a critical step toward such adaptive systems, we investigated whether pretrained computer vision models can accurately predict fear levels from spider-related images. We adapted three diverse models using transfer learning to predict human fear ratings (on a 0-100 scale) from a standardized dataset of 313 images. The models were evaluated using cross-validation, achieving an average mean absolute error (MAE) between 10.1 and 11.0. Our learning curve analysis revealed that reducing the dataset size significantly harmed performance, though further increases yielded no substantial gains. Explainability assessments showed the models' predictions were based on spider-related features. A category-wise error analysis further identified visual conditions associated with higher errors (e.g., distant views and artificial/painted spiders). These findings demonstrate the potential of explainable computer vision models in predicting fear ratings, highlighting the importance of both model explainability and a sufficient dataset size for developing effective emotion-aware therapeutic technologies.
- Abstract(参考訳): コンピュータビジョンの進歩は、特に患者反応に基づいて視覚刺激を動的に調整できるコンピュータ化露光療法において、臨床応用のための新たな道を開いた。
このような適応システムに向けた重要なステップとして、訓練済みのコンピュータビジョンモデルがクモ関連画像から恐怖レベルを正確に予測できるかどうかを検討した。
我々は、トランスファーラーニングを用いた3つの多様なモデルを適用し、313の画像の標準化されたデータセットから、人間の恐怖評価(0-100スケール)を予測する。
モデルはクロスバリデーションを用いて評価され、平均的な平均絶対誤差(MAE)は10.1から11.0である。
学習曲線解析の結果,データセットサイズを小さくすると性能が著しく低下するが,さらに増加しても実質的な利益は得られなかった。
説明可能性評価では、モデルの予測はクモに関する特徴に基づいていた。
カテゴリー単位の誤差解析により、より高い誤差(例えば、遠景、人工・塗装クモ)に関連する視覚的条件がさらに特定された。
これらの知見は、恐怖度予測におけるコンピュータビジョンモデルの可能性を示し、効果的な感情認識治療技術を開発する上で、モデル説明可能性と十分なデータセットサイズの両方の重要性を強調した。
関連論文リスト
- Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography [0.0]
胸部X線撮影における疾患検出のための放射線治療と深層学習によるアプローチについて検討した。
深層学習モデルは画像データから直接学習し、放射能ベースのモデルは手作りの特徴を抽出する。
これらの知見は、診断AIにおけるモデル選択のための統計的に検証された、データ駆動の推奨を提供する。
論文 参考訳(メタデータ) (2025-04-16T16:54:37Z) - Explainable AI-Driven Detection of Human Monkeypox Using Deep Learning and Vision Transformers: A Comprehensive Analysis [0.20482269513546453]
mpoxは動物園で流行するウイルス病で、公衆衛生に重大な影響を及ぼす。
症状が麻疹や鶏痘の症状とどのように一致しているかから,早期臨床診断は困難である。
深層学習(DL)技術と併用した医用画像は, 皮膚領域を解析することにより, 疾患検出の改善を約束している。
本研究は,皮膚病変画像データセットを用いて,深層学習と視覚トランスフォーマーに基づくモデルをスクラッチからトレーニングする可能性について検討した。
論文 参考訳(メタデータ) (2025-04-03T19:45:22Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
ビジョントランスフォーマー(ViT)は近年、コンピュータビジョンアプリケーションのためのCNNの代替として登場した。
難易度に基づいて,脳神経画像の下流タスクに対するViTアーキテクチャの変種を検証した。
合成および実MRIスキャンで事前訓練した微調整型視覚変換器モデルを用いて、5%と9-10%の性能向上を実現した。
論文 参考訳(メタデータ) (2023-03-14T20:18:12Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Interactive Analysis of CNN Robustness [11.136837582678869]
Perturberはウェブベースのアプリケーションで、3D入力シーンがインタラクティブに摂動した場合、CNNのアクティベーションと予測がどのように進化するかをユーザが調査することができる。
パーターバーは、カメラコントロール、照明とシェーディング効果、背景の修正、物体の変形、敵の攻撃など、様々なシーン修正を提供している。
機械学習の専門家によるケーススタディによると、Perturberはモデルの脆弱性に関する仮説を素早く生成し、モデルの振る舞いを質的に比較するのに役立つ。
論文 参考訳(メタデータ) (2021-10-14T18:52:39Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Patient-independent Epileptic Seizure Prediction using Deep Learning
Models [39.19336481493405]
発作予知システムの目的は、発作が起こる前に起こる前頭前脳のステージを正常に識別することである。
患者に依存しない発作予測モデルは、データセット内の複数の被験者に正確なパフォーマンスを提供するように設計されている。
患者に依存しない2つの深層学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-18T23:13:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。