論文の概要: Unified Interaction Foundational Model (UIFM) for Predicting Complex User and System Behavior
- arxiv url: http://arxiv.org/abs/2509.06025v1
- Date: Sun, 07 Sep 2025 11:57:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.823063
- Title: Unified Interaction Foundational Model (UIFM) for Predicting Complex User and System Behavior
- Title(参考訳): 複雑ユーザ・システム行動予測のための統合インタラクション基礎モデル(UIFM)
- Authors: Vignesh Ethiraj, Subhash Talluri,
- Abstract要約: 我々は、実際の行動理解のために設計された基盤モデルであるUIFM(Unified Interaction Foundation Model)を紹介する。
中心となるのは複合トークン化の原理であり、各マルチ属性イベントは単一のセマンティックコヒーレント単位として扱われる。
これによりUIFMは、データポイントの切断されたストリームではなく、すべてのインタラクションを知覚して、ユーザ行動の基盤となる"文法"を学ぶことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A central goal of artificial intelligence is to build systems that can understand and predict complex, evolving sequences of events. However, current foundation models, designed for natural language, fail to grasp the holistic nature of structured interactions found in domains like telecommunications, e-commerce and finance. By serializing events into text, they disassemble them into semantically fragmented parts, losing critical context. In this work, we introduce the Unified Interaction Foundation Model (UIFM), a foundation model engineered for genuine behavioral understanding. At its core is the principle of composite tokenization, where each multi-attribute event is treated as a single, semantically coherent unit. This allows UIFM to learn the underlying "grammar" of user behavior, perceiving entire interactions rather than a disconnected stream of data points. We demonstrate that this architecture is not just more accurate, but represents a fundamental step towards creating more adaptable and intelligent predictive systems.
- Abstract(参考訳): 人工知能の中心的な目標は、複雑な進化するイベントのシーケンスを理解し予測できるシステムを構築することである。
しかし、自然言語用に設計された現在の基礎モデルは、通信、電子商取引、金融といった領域で見られる構造的相互作用の全体的性質を把握できない。
イベントをテキストにシリアライズすることで、それらを意味的に断片化した部分に分解し、重要なコンテキストを失う。
本研究では,実際の行動理解を目的とした基盤モデルであるUIFMを紹介する。
中心となるのは複合トークン化の原理であり、各マルチ属性イベントは単一のセマンティックコヒーレント単位として扱われる。
これによりUIFMは、データポイントの切断されたストリームではなく、すべてのインタラクションを知覚して、ユーザ行動の基盤となる"文法"を学ぶことができる。
我々は、このアーキテクチャが単に正確であるだけでなく、より適応的でインテリジェントな予測システムを構築するための基本的なステップであることを示した。
関連論文リスト
- Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures [49.19753720526998]
合成データセット上でのニューラルネットワーク性能に関する理論的スケーリング法則を導出する。
局所性と重み共有によって生成過程の構造が整った畳み込みネットワークは、性能の高速化を享受できることを示す。
この発見は、ニューラルネットワークのスケーリング法則に基づくアーキテクチャ上のバイアスを明らかにし、モデルアーキテクチャとデータの統計的性質の間の相互作用によって表現学習がどのように形成されるかを強調している。
論文 参考訳(メタデータ) (2025-05-11T17:44:14Z) - SAFT: Structure-aware Transformers for Textual Interaction Classification [15.022958096869734]
テキスト・インタラクション・ネットワーク(英語: Textual Interaction Network, TIN)は、Eコマースのウェブサイトやソーシャルネットワークなどにおけるユーザとアイテム間のインタラクションをモデル化するためのデータ構造である。
対話の表現学習において,テキストおよび構造的意味論を効果的に融合するために,言語およびグラフベースのモジュールを統合する新しいアーキテクチャであるSAFTを提案する。
論文 参考訳(メタデータ) (2025-04-07T09:19:12Z) - Mechanistic understanding and validation of large AI models with SemanticLens [13.712668314238082]
航空機のような人間工学的なシステムとは異なり、AIモデルの内部動作はほとんど不透明である。
本稿では、コンポーネントによって符号化された隠れた知識をマッピングするニューラルネットワークの普遍的説明法であるSemanticLensを紹介する。
論文 参考訳(メタデータ) (2025-01-09T17:47:34Z) - Hierarchical Banzhaf Interaction for General Video-Language Representation Learning [60.44337740854767]
マルチモーダル表現学習は人工知能領域において重要な役割を担っている。
本稿では,多変量協調ゲーム理論を用いて,ビデオテキストをゲームプレイヤーとしてモデル化する手法を提案する。
元の構造をフレキシブルなエンコーダ・デコーダ・フレームワークに拡張し、モデルが様々な下流タスクに適応できるようにする。
論文 参考訳(メタデータ) (2024-12-30T14:09:15Z) - ActPC-Chem: Discrete Active Predictive Coding for Goal-Guided Algorithmic Chemistry as a Potential Cognitive Kernel for Hyperon & PRIMUS-Based AGI [0.0]
バイオインスパイアされたゴール誘導人工知能(AI)のための新しいパラダイム(ラベル付き ActPC-Chem)を探求する。
ActPCは、離散アクティブ予測符号化(ActPC)の形式で、書き換え規則のアルゴリズム化学で運用されている。
論文 参考訳(メタデータ) (2024-12-21T09:14:25Z) - Imitation Learning-based Implicit Semantic-aware Communication Networks:
Multi-layer Representation and Collaborative Reasoning [68.63380306259742]
有望な可能性にもかかわらず、セマンティック通信とセマンティック・アウェア・ネットワーキングはまだ初期段階にある。
本稿では,CDCとエッジサーバの複数層を連携させる,推論に基づく暗黙的セマンティック・アウェア通信ネットワークアーキテクチャを提案する。
暗黙的セマンティクスの階層構造と個人ユーザのパーソナライズされた推論嗜好を考慮に入れたセマンティクス情報の多層表現を提案する。
論文 参考訳(メタデータ) (2022-10-28T13:26:08Z) - Semantic Interactive Learning for Text Classification: A Constructive
Approach for Contextual Interactions [0.0]
本稿では,テキスト領域に対するセマンティック対話学習という新しいインタラクションフレームワークを提案する。
構築的および文脈的フィードバックを学習者に取り入れることで、人間と機械間のよりセマンティックなアライメントを実現するアーキテクチャを見つけることができる。
本研究では,人間の概念的修正を非外挿訓練例に翻訳するのに有効なSemanticPushという手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T08:13:45Z) - Discrete-Valued Neural Communication [85.3675647398994]
コンポーネント間で伝達される情報を離散表現に制限することは、有益なボトルネックであることを示す。
個人は「猫」が特定の経験に基づいて何であるかについて異なる理解を持っているが、共有された離散トークンは、個人間のコミュニケーションが内部表現の個人差によって切り離されることを可能にする。
我々は、量子化機構をベクトル量子化変分オートコーダから共有符号ブックによる多頭部離散化に拡張し、離散値ニューラル通信に利用する。
論文 参考訳(メタデータ) (2021-07-06T03:09:25Z) - Neural Production Systems [90.75211413357577]
視覚環境は、異なるオブジェクトまたはエンティティから構成される。
イメージをエンティティに分割するために、ディープラーニング研究者は構造的誘導バイアスを提案した。
私たちは認知科学からインスピレーションを得て、一連のルールテンプレートからなる古典的なアプローチを復活させます。
このアーキテクチャは柔軟でダイナミックな制御フローを実現し、エンティティ固有およびルールベースの情報を分解するのに役立つ。
論文 参考訳(メタデータ) (2021-03-02T18:53:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。