論文の概要: High-Quality Tomographic Image Reconstruction Integrating Neural Networks and Mathematical Optimization
- arxiv url: http://arxiv.org/abs/2509.06082v1
- Date: Sun, 07 Sep 2025 14:51:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.84969
- Title: High-Quality Tomographic Image Reconstruction Integrating Neural Networks and Mathematical Optimization
- Title(参考訳): ニューラルネットワークと数学的最適化を統合した高画質トモグラフィ画像再構成
- Authors: Anuraag Mishra, Andrea Gilch, Benjamin Apeleo Zubiri, Jan Rolfes, Frauke Liers,
- Abstract要約: 投影型ナノ・マイクロトモグラフィーによる画像再構成技術を開発した。
我々の貢献は、特に鋭い縁で連結された均質な材料相からなる標本について、復元品質の向上に焦点をあてている。
- 参考スコア(独自算出の注目度): 0.5872014229110214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we develop a novel technique for reconstructing images from projection-based nano- and microtomography. Our contribution focuses on enhancing reconstruction quality, particularly for specimen composed of homogeneous material phases connected by sharp edges. This is accomplished by training a neural network to identify edges within subpictures. The trained network is then integrated into a mathematical optimization model, to reduce artifacts from previous reconstructions. To this end, the optimization approach favors solutions according to the learned predictions, however may also determine alternative solutions if these are strongly supported by the raw data. Hence, our technique successfully incorporates knowledge about the homogeneity and presence of sharp edges in the sample and thereby eliminates blurriness. Our results on experimental datasets show significant enhancements in interface sharpness and material homogeneity compared to benchmark algorithms. Thus, our technique produces high-quality reconstructions, showcasing its potential for advancing tomographic imaging techniques.
- Abstract(参考訳): 本研究では,投影型ナノ・マイクロトモグラフィによる画像再構成技術を開発した。
我々の貢献は、特に鋭い縁で連結された均質な材料相からなる標本について、復元品質の向上に焦点をあてている。
これは、サブピクチャ内のエッジを特定するためにニューラルネットワークをトレーニングすることで達成される。
その後、トレーニングされたネットワークを数学的最適化モデルに統合し、以前の再構築によるアーティファクトを減らす。
この目的のために、最適化手法は学習した予測に従って解を優先するが、生データに強く支持されている場合、代替解を決定することもできる。
したがって,本手法は試料中の鋭い縁の均一性と存在についての知識をうまく組み込んで,曖昧さを除去する。
実験結果から, 界面のシャープネスと材料均質性は, ベンチマークアルゴリズムと比較して著しく向上した。
そこで本手法は高品質な画像再構成を実現し,断層撮影技術の進歩の可能性を示した。
関連論文リスト
- Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
超解像アルゴリズムは、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換する。
再構成過程における画像の特徴抽出と非線形マッピング手法は,既存のアルゴリズムでは依然として困難である。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
論文 参考訳(メタデータ) (2024-07-18T06:50:39Z) - Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging [0.0]
本稿では,未決定の線形逆問題に対する空間変動正規化モデルの開発に焦点をあてる。
提案モデルの主な目的は,ディノベーションと細部・縁の保存のバランスを良くすることである。
畳み込みニューラルネットワークは、トレーニングにおいて弾性損失関数を用いて、基底真理像とその勾配を近似するように設計されている。
論文 参考訳(メタデータ) (2024-04-25T08:58:41Z) - DensePANet: An improved generative adversarial network for photoacoustic tomography image reconstruction from sparse data [1.4665304971699265]
スパースデータからのPAT画像再構成の問題を解決するために,DensePANetと呼ばれるエンドツーエンドの手法を提案する。
提案したモデルは、FD-UNet++と呼ばれるジェネレータにUNetを改良し、再構成性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-04-19T09:52:32Z) - TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose
Estimation [55.94900327396771]
合成データから6次元オブジェクトポーズ推定のためのニューラルネットワークによるテクスチャ学習を提案する。
実画像からオブジェクトの現実的なテクスチャを予測することを学ぶ。
画素完全合成データからポーズ推定を学習する。
論文 参考訳(メタデータ) (2022-12-25T13:36:32Z) - DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior [0.22940141855172028]
本稿では,古典的反復法をディープラーニングアプリケーションに組み込んだ非盲検画像デコンボリューションモデルを提案する。
このアルゴリズムは、トレーニング可能な畳み込み層と統合され、復元された画像構造と詳細を強化する。
論文 参考訳(メタデータ) (2022-09-30T11:15:03Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。