論文の概要: A Kriging-HDMR-based surrogate model with sample pool-free active learning strategy for reliability analysis
- arxiv url: http://arxiv.org/abs/2509.06978v1
- Date: Sat, 30 Aug 2025 04:15:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-14 20:41:04.932425
- Title: A Kriging-HDMR-based surrogate model with sample pool-free active learning strategy for reliability analysis
- Title(参考訳): Kriging-HDMR-based surrogate model with sample pool-free active learning strategy for reliability analysis
- Authors: Wenxiong Li, Hanyu Liao, Suiyin Chen,
- Abstract要約: 本研究では,信頼性解析のためのKriging-HDMRモデルに基づく能動的学習代理モデルを提案する。
このサロゲート・モデリング・フレームワークのアーキテクチャは、3つの異なる段階から成り、全ての確率変数に対する単一変数のサブサロゲートモデルの開発、結合変数のサブサロゲートモデルの要件の特定、結合変数のサブサロゲートモデルの構築である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In reliability engineering, conventional surrogate models encounter the "curse of dimensionality" as the number of random variables increases. While the active learning Kriging surrogate approaches with high-dimensional model representation (HDMR) enable effective approximation of high-dimensional functions and are widely applied to optimization problems, there are rare studies specifically focused on reliability analysis, which prioritizes prediction accuracy in critical regions over uniform accuracy across the entire domain. This study develops an active learning surrogate model method based on the Kriging-HDMR modeling for reliability analysis. The proposed approach facilitates the approximation of high-dimensional limit state functions through a composite representation constructed from multiple low-dimensional sub-surrogate models. The architecture of the surrogate modeling framework comprises three distinct stages: developing single-variable sub-surrogate models for all random variables, identifying the requirements for coupling-variable sub-surrogate models, and constructing the coupling-variable sub-surrogate models. Optimization mathematical models for selection of design of experiment samples are formulated based on each stage's characteristics, with objectives incorporating uncertainty variance, predicted mean, sample location and inter-sample distances. A candidate sample pool-free approach is adopted to achieve the selection of informative samples. Numerical experiments demonstrate that the proposed method achieves high computational efficiency while maintaining strong predictive accuracy in solving high-dimensional reliability problems.
- Abstract(参考訳): 信頼性工学において、従来の代理モデルは、確率変数の数が増加するにつれて「次元の曲線」に遭遇する。
高次元モデル表現(HDMR)を用いたアクティブラーニングシュロゲートアプローチは高次元関数の有効近似を可能にし、最適化問題に広く適用されているが、信頼性解析に特化して、領域全体の一様精度よりも臨界領域における予測精度を優先する研究は稀である。
本研究では,信頼性解析のためのKriging-HDMRモデルに基づく能動的学習代理モデルを提案する。
提案手法は,複数の低次元サブ代理モデルから構築した合成表現を用いて,高次元極限状態関数の近似を容易にする。
このサロゲート・モデリング・フレームワークのアーキテクチャは、3つの異なる段階から成り、全ての確率変数に対する単一変数のサブサロゲートモデルの開発、結合変数のサブサロゲートモデルの要件の特定、結合変数のサブサロゲートモデルの構築である。
実験試料の選択のための最適化数学モデルは各ステージの特性に基づいて定式化され、不確実性分散、予測平均、サンプル位置、サンプル間距離が組み込まれている。
候補となるサンプルプールフリーアプローチを採用して,情報的サンプルの選択を実現する。
数値実験により,高次元信頼性問題の解法において,高い予測精度を維持しながら高い計算効率を実現することを示した。
関連論文リスト
- Composition and Alignment of Diffusion Models using Constrained Learning [79.36736636241564]
拡散モデルは、複雑な分布からサンプルを採取する能力により、生成的モデリングにおいて普及している。
i) 拡散モデルを微調整して報酬と整合させるアライメントと、(ii) 予め訓練された拡散モデルを組み合わせて、それぞれが生成した出力に望ましい属性を強調する合成である。
本稿では,共役モデルが報酬制約を満たすこと,あるいは(潜在的に複数の)事前学習モデルに近づき続けることを強制することによって,拡散モデルのアライメントと構成を統一する制約付き最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-26T15:06:30Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - General multi-fidelity surrogate models: Framework and active learning
strategies for efficient rare event simulation [1.708673732699217]
複雑な現実世界のシステムの失敗の確率を推定することは、しばしば違法に高価である。
本稿では,頑健な多要素代理モデリング戦略を提案する。
高忠実度モデル呼び出しの数を劇的に削減しながら、非常に正確であることが示されている。
論文 参考訳(メタデータ) (2022-12-07T00:03:21Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - High-Dimensional Differentially-Private EM Algorithm: Methods and
Near-Optimal Statistical Guarantees [8.089708900273804]
高次元潜在変数モデルにおける差分プライベート期待最大化(EM)アルゴリズムを設計するための一般的なフレームワークを開発している。
各モデルにおいて、差分プライバシー制約による収束のほぼ最適度を確立する。
この設定では、差分プライバシーを保証する近レート最適EMアルゴリズムを提案します。
論文 参考訳(メタデータ) (2021-04-01T04:08:34Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
本稿では,正規化とアンサンブル技術を融合した高次元バイナリ分類手法を提案する。
医学ゲノミクスの応用において,本手法は競合する手法によって見落とされた重要なバイオマーカーを同定する。
論文 参考訳(メタデータ) (2021-02-17T05:57:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。