論文の概要: POW: Political Overton Windows of Large Language Models
- arxiv url: http://arxiv.org/abs/2509.08853v1
- Date: Mon, 08 Sep 2025 17:57:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-12 16:52:24.073373
- Title: POW: Political Overton Windows of Large Language Models
- Title(参考訳): POW: 大規模言語モデルの政治的オーバートンWindows
- Authors: Leif Azzopardi, Yashar Moshfeghi,
- Abstract要約: 大規模言語モデル(LLM)における政治的バイアスは、AIシステムの責任ある展開に対する関心が高まっていることを示している。
伝統的な監査は、モデルの政治的立場をポイント推定として見つけようと試み、モデルが望んでいない、あるいは言おうとしないものを形成するイデオロギー的境界の広いセットを隠蔽する。
本稿では,これらの境界をマッピングするフレームワークとして,オーバートンウィンドウの概念について述べる。
- 参考スコア(独自算出の注目度): 15.998401166180388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Political bias in Large Language Models (LLMs) presents a growing concern for the responsible deployment of AI systems. Traditional audits often attempt to locate a model's political position as a point estimate, masking the broader set of ideological boundaries that shape what a model is willing or unwilling to say. In this paper, we draw upon the concept of the Overton Window as a framework for mapping these boundaries: the range of political views that a given LLM will espouse, remain neutral on, or refuse to endorse. To uncover these windows, we applied an auditing-based methodology, called PRISM, that probes LLMs through task-driven prompts designed to elicit political stances indirectly. Using the Political Compass Test, we evaluated twenty-eight LLMs from eight providers to reveal their distinct Overton Windows. While many models default to economically left and socially liberal positions, we show that their willingness to express or reject certain positions varies considerably, where DeepSeek models tend to be very restrictive in what they will discuss and Gemini models tend to be most expansive. Our findings demonstrate that Overton Windows offer a richer, more nuanced view of political bias in LLMs and provide a new lens for auditing their normative boundaries.
- Abstract(参考訳): 大規模言語モデル(LLM)における政治的バイアスは、AIシステムの責任ある展開に対する関心が高まっていることを示している。
伝統的な監査は、しばしばモデルの政治的位置を点推定として見つけようと試み、モデルが望んでいない、あるいは言おうとしないものを形成するイデオロギー的境界の広いセットを隠蔽する。
本稿では,これらの境界をマッピングするための枠組みとして,Overton Windowの概念について述べる。
これらの窓を明らかにするために、我々はPRISMと呼ばれる監査ベースの方法論を適用し、政治的スタンスを間接的に引き出すために設計されたタスク駆動のプロンプトを通してLCMを探索した。
政治コンパステストを用いて、8つのプロバイダから28のLLMを評価し、その異なるOverton Windowsを明らかにした。
多くのモデルは経済的に左派と社会的にリベラルな立場をデフォルトとするが、特定の立場を表現または拒否する意志は著しく異なり、DeepSeekモデルは議論するものに非常に制限的であり、Geminiモデルは最も拡大する傾向にある。
以上の結果から,Overton Windows は LLM における政治的偏見のより豊かでニュアンスの高いビューを提供し,それらの規範的境界を監査するための新たなレンズを提供することが示された。
関連論文リスト
- Multilingual Political Views of Large Language Models: Identification and Steering [9.340686908318776]
大規模言語モデル(LLM)は、日々のツールやアプリケーションでますます使われており、政治的見解への潜在的な影響に対する懸念が高まっている。
政治コンパステスト(Political Compass Test)を用いて,14言語にまたがる7つのモデルの評価を行った。
以上の結果から,より大きなモデルがリバタリアンと左の位置に一貫して移行し,言語やモデルファミリに有意な変化が認められた。
論文 参考訳(メタデータ) (2025-07-30T12:42:35Z) - Identifying Fine-grained Forms of Populism in Political Discourse: A Case Study on Donald Trump's Presidential Campaigns [17.242754326635833]
本稿では,大言語モデルがポピュリズムの微細な形態を識別し,分類できるかどうかを検討する。
オープンウェイトとプロプライエタリの両方で、複数のプロンプトパラダイムで事前訓練された(大規模な)言語モデルを評価する。
微調整のRoBERTa分類器は、微調整のない限り、新しい命令のLLMをはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2025-07-25T14:18:54Z) - Democratic or Authoritarian? Probing a New Dimension of Political Biases in Large Language Models [72.89977583150748]
本研究では,大規模言語モデルとより広い地政学的価値システムとの整合性を評価する新しい手法を提案する。
LLMは一般的に民主的価値観や指導者を好んでいるが、マンダリンでの権威主義的人物に対する好意が増している。
論文 参考訳(メタデータ) (2025-06-15T07:52:07Z) - Probing the Subtle Ideological Manipulation of Large Language Models [0.3745329282477067]
大規模言語モデル (LLM) は自然言語処理に変化をもたらしたが、イデオロギー操作への感受性に懸念が持たれている。
本稿では,イデオロギー的QA,ステートメントランキング,マニフェスト・クローゼ完了,議会法案理解などのタスクを通じて,多様なイデオロギー的位置を反映する新しいマルチタスクデータセットを提案する。
以上の結果から,微調整によりニュアンス的なイデオロギー的アライメントが著しく向上する一方,明示的なプロンプトは軽微な改善しか得られないことが示唆された。
論文 参考訳(メタデータ) (2025-04-19T13:11:50Z) - PRISM: A Methodology for Auditing Biases in Large Language Models [9.751718230639376]
PRISMは、大規模言語モデルを監査するための柔軟な調査ベースの方法論である。
優先事項を直接調査するのではなく、タスクベースの調査を通じて間接的にこれらのポジションを照会しようとする。
論文 参考訳(メタデータ) (2024-10-24T16:57:20Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
本稿では, LLMのイデオロギー的姿勢が創造者の世界観を反映していることを示す。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
我々は,大規模言語モデルにおける価値と意見の制約評価パラダイムに挑戦する。
強制されない場合、モデルが実質的に異なる答えを与えることを示す。
我々はこれらの知見をLLMの価値と意見を評価するための推奨とオープンな課題に抽出する。
論文 参考訳(メタデータ) (2024-02-26T18:00:49Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。