論文の概要: Noise-Robust Topology Estimation of 2D Image Data via Neural Networks and Persistent Homology
- arxiv url: http://arxiv.org/abs/2509.09140v1
- Date: Thu, 11 Sep 2025 04:21:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-12 16:52:24.226994
- Title: Noise-Robust Topology Estimation of 2D Image Data via Neural Networks and Persistent Homology
- Title(参考訳): ニューラルネットワークによる2次元画像データのノイズ・ロバスト位相推定と永続ホモロジー
- Authors: Dylan Peek, Matthew P. Skerritt, Stephan Chalup,
- Abstract要約: 永続ホモロジー(PH)とニューラルネットワーク(ANN)は、データから位相構造を推定するための対照的なアプローチを提供する。
本研究では,2次元2次元画像におけるベッチ数予測のための教師付きニューラルネットワークの雑音頑健性について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Persistent Homology (PH) and Artificial Neural Networks (ANNs) offer contrasting approaches to inferring topological structure from data. In this study, we examine the noise robustness of a supervised neural network trained to predict Betti numbers in 2D binary images. We compare an ANN approach against a PH pipeline based on cubical complexes and the Signed Euclidean Distance Transform (SEDT), which is a widely adopted strategy for noise-robust topological analysis. Using one synthetic and two real-world datasets, we show that ANNs can outperform this PH approach under noise, likely due to their capacity to learn contextual and geometric priors from training data. Though still emerging, the use of ANNs for topology estimation offers a compelling alternative to PH under structural noise.
- Abstract(参考訳): 永続ホモロジー(PH)とニューラルネットワーク(ANN)は、データから位相構造を推定するための対照的なアプローチを提供する。
本研究では,2次元2次元画像におけるベッチ数予測のための教師付きニューラルネットワークの雑音頑健性について検討した。
複素数体に基づくPHパイプラインに対するANNアプローチと、ノイズロスト位相解析のための広く採用されているSEDT(Signed Euclidean Distance Transform)を比較した。
1つの合成データセットと2つの実世界のデータセットを用いて、ANNは、トレーニングデータから文脈的および幾何学的事前学習能力によって、このPHアプローチをノイズ下で上回ることができることを示す。
ANNをトポロジー推定に利用することは、構造ノイズ下でPHに代わる魅力的な代替手段となる。
関連論文リスト
- Hopfield-Enhanced Deep Neural Networks for Artifact-Resilient Brain
State Decoding [0.0]
そこで本研究では, ホップフィールド・ネットワークとコナール・ニューラル・ネットワーク(CNN)を併用した2段階の計算手法を提案する。
様々なレベルのデータ圧縮とノイズ強度のパフォーマンスは、我々のフレームワークがアーティファクトを効果的に軽減し、より低いノイズレベルにおいてクリーンなデータCNNと同等の精度でモデルに到達できることを示しました。
論文 参考訳(メタデータ) (2023-11-06T15:08:13Z) - Information Bottleneck Analysis of Deep Neural Networks via Lossy Compression [37.69303106863453]
Information Bottleneck(IB)原則は、ディープニューラルネットワーク(DNN)のトレーニングプロセスを分析するための情報理論フレームワークを提供する。
本稿では,一般NNのICB解析を行うためのフレームワークを提案する。
また,MI力学の新たな特徴を明らかにするため,実規模に近いISB解析を行う。
論文 参考訳(メタデータ) (2023-05-13T21:44:32Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
トポロジカル・データ解析は、複雑な構造のコンパクトでノイズ・ロバストな表現を提供する。
ディープニューラルネットワーク(DNN)は、モデルアーキテクチャによって定義された一連の変換に関連する数百万のパラメータを学習する。
本稿では,画像分類に使用される畳み込みニューラルネットワークの解釈可能性に関する知見を得る目的で,TDAの最先端技術を適用した。
論文 参考訳(メタデータ) (2022-12-01T02:05:44Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
ニューラルアーキテクチャサーチ(NAS)と受信信号強度(RSS)マップ再構築のための自己学習に基づくモデルを提案する。
このアプローチは、まず最適なNNアーキテクチャを見つけ、与えられた(RSS)マップの地上実測値に対して同時に推論モデルを訓練する。
実験結果から,この第2モデルの信号予測は,非学習に基づく最先端技術や,アーキテクチャ探索を伴わないNNモデルよりも優れていた。
論文 参考訳(メタデータ) (2021-05-17T12:19:22Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
本研究では,Convolutional Neural Networks(CNN)に基づく深層学習(DL)アルゴリズムを用いて,Sentinel-1データからスペックルノイズをフィルタリングする新しい手法を提案する。
得られた結果は、技術の現状と比較すると、ピーク信号対雑音比(PSNR)と構造類似度指数(SSIM)の点で明確な改善を示しています。
論文 参考訳(メタデータ) (2021-04-19T14:43:07Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Inter-layer Information Similarity Assessment of Deep Neural Networks
Via Topological Similarity and Persistence Analysis of Data Neighbour
Dynamics [93.4221402881609]
ディープニューラルネットワーク(DNN)による情報構造の定量的解析により、DNNアーキテクチャの理論的性能に関する新たな知見が明らかにされる。
量的情報構造解析のためのLSとIDの戦略に着想を得て, 層間情報類似度評価のための2つの新しい補完手法を提案する。
本研究では,画像データを用いた深層畳み込みニューラルネットワークのアーキテクチャ解析を行い,その効果を実証する。
論文 参考訳(メタデータ) (2020-12-07T15:34:58Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。