論文の概要: Reading Between the Lines: Classifying Resume Seniority with Large Language Models
- arxiv url: http://arxiv.org/abs/2509.09229v1
- Date: Thu, 11 Sep 2025 08:06:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-12 16:52:24.283744
- Title: Reading Between the Lines: Classifying Resume Seniority with Large Language Models
- Title(参考訳): 行間の読み上げ:大規模言語モデルによる列挙精度の分類
- Authors: Matan Cohen, Shira Shani, Eden Menahem, Yehudit Aperstein, Alexander Apartsin,
- Abstract要約: 本研究では,履歴書の高齢者分類を自動化するための大規模言語モデルの有効性について検討した。
実世界の履歴書と合成されたハードサンプルを組み合わせたハイブリッドデータセットを提案する。
このデータセットを用いて、高齢者のインフレーションや暗黙の専門知識に関連する微妙な言語的手がかりを検出するために、大規模言語モデルの性能を評価する。
- 参考スコア(独自算出の注目度): 38.57404400070555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately assessing candidate seniority from resumes is a critical yet challenging task, complicated by the prevalence of overstated experience and ambiguous self-presentation. In this study, we investigate the effectiveness of large language models (LLMs), including fine-tuned BERT architectures, for automating seniority classification in resumes. To rigorously evaluate model performance, we introduce a hybrid dataset comprising both real-world resumes and synthetically generated hard examples designed to simulate exaggerated qualifications and understated seniority. Using the dataset, we evaluate the performance of Large Language Models in detecting subtle linguistic cues associated with seniority inflation and implicit expertise. Our findings highlight promising directions for enhancing AI-driven candidate evaluation systems and mitigating bias introduced by self-promotional language. The dataset is available for the research community at https://bit.ly/4mcTovt
- Abstract(参考訳): 履歴書から候補者の年長を正確に評価することは、過度な経験と曖昧な自己表現の頻度によって複雑になるが、重要な課題である。
本研究では,大規模言語モデル(LLM)による履歴書の高齢者分類の自動化について検討した。
モデル性能を厳格に評価するために,実世界の履歴書と,誇張された資格と過小評価された高齢者をシミュレートするために設計された,合成されたハードサンプルを組み合わせたハイブリッドデータセットを導入する。
このデータセットを用いて、高齢者のインフレーションや暗黙の専門知識に関連する微妙な言語的手がかりを検出するために、大規模言語モデルの性能を評価する。
本研究は,AIによる候補評価システムの向上と,自己感情言語による偏見の緩和に向けた有望な方向性を明らかにする。
データセットはリサーチコミュニティでhttps://bit.ly/4mcTovtで公開されている。
関連論文リスト
- Improving Pinterest Search Relevance Using Large Language Models [15.24121687428178]
我々はLarge Language Models (LLM) を検索関連モデルに統合する。
提案手法では,生成的視覚言語モデルから抽出したキャプションを含むコンテンツ表現とともに検索クエリを使用する。
LLMをベースとしたモデルからリアルタイム可観測モデルアーキテクチャと特徴を抽出する。
論文 参考訳(メタデータ) (2024-10-22T16:29:33Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
本稿では, 実例と非実例を手作業で構築することなく, 挑戦的なテストセットを自動生成する手法を提案する。
一般的なNLIデータセットのテストセットを,トレーニングダイナミクスを利用した3つの難易度に分類する。
我々の評価法がトレーニングセットに適用された場合、トレーニング対象データのごく一部でトレーニングされたモデルは、フルデータセットでトレーニングされたモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-04T13:39:21Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Harnessing the Intrinsic Knowledge of Pretrained Language Models for Challenging Text Classification Settings [5.257719744958367]
この論文は、事前学習された言語モデル(PLM)の本質的な知識を活用することによって、テキスト分類における3つの挑戦的な設定を探求する。
本研究では, PLMの文脈表現に基づく特徴量を利用したモデルを構築し, 人間の精度に匹敵する, あるいは超越する性能を実現する。
最後に、実効的な実演を選択することで、大規模言語モデルの文脈内学習プロンプトに対する感受性に取り組む。
論文 参考訳(メタデータ) (2024-08-28T09:07:30Z) - Investigating a Benchmark for Training-set free Evaluation of Linguistic Capabilities in Machine Reading Comprehension [12.09297288867446]
合成課題集合上でのトレーニングセット自由設定において最適化モデルを評価するためのフレームワークについて検討する。
生成手法の単純さにもかかわらず、データは自然性や語彙の多様性に関してクラウドソースのデータセットと競合する。
我々は、さらに実験を行い、最先端の言語モデルに基づくMRCシステムが、挑戦セットを正しく成功させるために学習できることを示します。
論文 参考訳(メタデータ) (2024-08-09T12:23:36Z) - Improving Attributed Text Generation of Large Language Models via Preference Learning [28.09715554543885]
属性タスクを選好学習としてモデル化し,自動選好最適化フレームワークを導入する。
APOは、回答品質の高い最先端の引用F1を達成する。
論文 参考訳(メタデータ) (2024-03-27T09:19:13Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
抽象的な要約は、事前訓練された言語モデルと大規模データセットの可用性のおかげで、近年で新たな関心を集めている。
有望な結果にもかかわらず、現在のモデルはいまだに現実的に矛盾した要約を生み出すことに苦しむ。
事実整合性評価モデルを利用して、多言語要約を改善する。
論文 参考訳(メタデータ) (2022-12-20T19:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。