論文の概要: Limited Reference, Reliable Generation: A Two-Component Framework for Tabular Data Generation in Low-Data Regimes
- arxiv url: http://arxiv.org/abs/2509.09960v1
- Date: Fri, 12 Sep 2025 04:34:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-15 16:03:07.975585
- Title: Limited Reference, Reliable Generation: A Two-Component Framework for Tabular Data Generation in Low-Data Regimes
- Title(参考訳): 限定参照・信頼性生成:低データレジームにおけるタブラリデータ生成のための2成分フレームワーク
- Authors: Mingxuan Jiang, Yongxin Wang, Ziyue Dai, Yicun Liu, Hongyi Nie, Sen Liu, Hongfeng Chai,
- Abstract要約: ReFineは、ドメイン固有の機能の配布に向けて生成をガイドするフレームワークである。
様々な回帰と分類のベンチマークの実験では、ReFineは最先端の手法を一貫して上回っている。
- 参考スコア(独自算出の注目度): 7.036974567001374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic tabular data generation is increasingly essential in data management, supporting downstream applications when real-world and high-quality tabular data is insufficient. Existing tabular generation approaches, such as generative adversarial networks (GANs), diffusion models, and fine-tuned Large Language Models (LLMs), typically require sufficient reference data, limiting their effectiveness in domain-specific databases with scarce records. While prompt-based LLMs offer flexibility without parameter tuning, they often fail to capture dataset-specific feature-label dependencies and generate redundant data, leading to degradation in downstream task performance. To overcome these issues, we propose ReFine, a framework that (i) derives symbolic "if-then" rules from interpretable models and embeds them into prompts to explicitly guide generation toward domain-specific feature distribution, and (ii) applies a dual-granularity filtering strategy that suppresses over-sampling patterns and selectively refines rare but informative samples to reduce distributional imbalance. Extensive experiments on various regression and classification benchmarks demonstrate that ReFine consistently outperforms state-of-the-art methods, achieving up to 0.44 absolute improvement in R-squared for regression and 10.0 percent relative improvement in F1 score for classification tasks.
- Abstract(参考訳): 合成表データ生成はデータ管理においてますます不可欠であり、現実世界や高品質の表データが不十分な場合、下流アプリケーションをサポートする。
生成逆数ネットワーク(GAN)、拡散モデル(拡散モデル)、微調整大言語モデル(LLM)といった既存の表生成アプローチは、典型的には十分な参照データを必要とし、少ないレコードを持つドメイン固有データベースでの有効性を制限している。
プロンプトベースのLLMはパラメータチューニングなしで柔軟性を提供するが、データセット固有の特徴ラベル依存関係をキャプチャして冗長なデータを生成することができず、ダウンストリームタスクのパフォーマンスが低下する。
これらの問題を克服するために、私たちはReFineというフレームワークを提案します。
i) 解釈可能なモデルから象徴的な「if-then」ルールを導出し、ドメイン固有の特徴分布に向けて生成を明示的に導くプロンプトに埋め込み、
(II) 過剰サンプリングパターンを抑え, 希少だが情報的サンプルを選択的に精製し, 分布不均衡を低減させる二重粒度フィルタリング法を適用した。
様々な回帰と分類のベンチマークに関する大規模な実験により、ReFineは最先端の手法を一貫して上回り、回帰では最大0.44のR-squared、分類タスクではF1スコアの10.0%の絶対的な改善を達成している。
関連論文リスト
- CART-based Synthetic Tabular Data Generation for Imbalanced Regression [1.342834401139078]
我々は、既存のCARTベースの合成データ生成手法を適応させ、不均衡回帰に適合させることを提案する。
本手法は, 対象空間のスパース領域におけるサンプリングを誘導するための関連性および密度に基づくメカニズムを統合する。
本実験は,ベンチマークデータセット間での極端目標値の予測に焦点をあてる。
論文 参考訳(メタデータ) (2025-06-03T12:42:20Z) - Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
生成情報検索(GenIR)は、文書識別子(ドシデント)生成タスクとして文書検索を定式化する有望なニューラル検索パラダイムである。
既存のGenIRモデルはトークンレベルのミスアライメントに悩まされており、次のトークンを予測するためにトレーニングされたモデルは、ドキュメントレベルの関連性を効果的にキャプチャできないことが多い。
本稿では,トークンレベルのドシデント生成と文書レベルのドシデンス推定をペアのランク付けによる直接最適化により整合するダイレクトドキュメントレバレンス最適化(DDRO)を提案する。
論文 参考訳(メタデータ) (2025-04-07T15:27:37Z) - Towards Robust Universal Information Extraction: Benchmark, Evaluation, and Solution [66.11004226578771]
既存の堅牢なベンチマークデータセットには2つの重要な制限がある。
単一の情報抽出(IE)タスクに対して、限られた範囲の摂動しか生成しない。
LLM(Large Language Models)の強力な生成機能を考慮すると、ruIE-Benchと呼ばれるRobust UIEのための新しいベンチマークデータセットを導入する。
データのうち、 textbf15% しかトレーニングしない場合、3つの IE タスクに対して、平均 textbf7.5% の相対的なパフォーマンス改善につながることを示す。
論文 参考訳(メタデータ) (2025-03-05T05:39:29Z) - SampleLLM: Optimizing Tabular Data Synthesis in Recommendations [46.689486044254544]
タブラルデータ合成は機械学習において重要であるが、既存の一般的な手法は非常にデータに依存しており、レコメンデータシステムでは不足することが多い。
この制限は、複雑な分布を捉え、スパースデータと限定データから特徴関係を理解するのが困難であることから生じる。
そこで本研究では,LLMに基づくデータ合成の品質向上を目的とした,SampleLLMという2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-27T15:12:27Z) - Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting [107.4034346788744]
既存の車両軌道予測モデルは、一般化可能性、予測の不確実性、複雑な相互作用を扱う。
本研究では,(1)自己拡張(SD)とマスドレコンストラクション(MR)による二重レベル表現学習,グローバルコンテキストと細部の詳細の収集,(2)レジスタベースのクエリと事前学習の強化,クラスタリングと抑圧の必要性の排除,(3)微調整中の適応型プロンプトチューニング,メインアーキテクチャの凍結,および少数のプロンプトの最適化といった,新たなトラジェクタ予測フレームワークであるPerceiverを提案する。
論文 参考訳(メタデータ) (2025-01-08T20:11:09Z) - A Correlation- and Mean-Aware Loss Function and Benchmarking Framework to Improve GAN-based Tabular Data Synthesis [2.2451409468083114]
本稿では,GAN(Generative Adversarial Network)のための新しい相関と平均認識損失関数を提案する。
提案した損失関数は、真のデータ分布をキャプチャする既存の手法よりも統計的に有意な改善を示す。
ベンチマークフレームワークは、強化された合成データ品質により、下流の機械学習タスクのパフォーマンスが向上することを示している。
論文 参考訳(メタデータ) (2024-05-27T09:08:08Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - RoPDA: Robust Prompt-based Data Augmentation for Low-Resource Named
Entity Recognition [10.03246698225533]
低リソースNERのためのロバストプロンプトベースデータ拡張(RoPDA)
継続的なプロンプトを持つ事前学習言語モデル(PLM)に基づいて、RoPDAはエンティティ拡張とコンテキスト拡張を実行する。
異なるドメインの3つのベンチマークの実験では、RoPDAは強いベースラインで大幅に改善されている。
論文 参考訳(メタデータ) (2023-07-11T14:44:14Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。