論文の概要: Enhancing ML Models Interpretability for Credit Scoring
- arxiv url: http://arxiv.org/abs/2509.11389v1
- Date: Sun, 14 Sep 2025 18:47:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:23.061854
- Title: Enhancing ML Models Interpretability for Credit Scoring
- Title(参考訳): クレジットスコーリングのためのMLモデルの解釈可能性向上
- Authors: Sagi Schwartz, Qinling Wang, Fang Fang,
- Abstract要約: 本稿では,ブラックボックスモデルから特徴選択を導出するポストホックな解釈と,予測能力と透明性を両立するガラスボックスモデルを訓練するハイブリッドアプローチを提案する。
Lending Clubのデータセットを用いて、ベンチマークブラックボックスモデルに匹敵する性能を達成し、わずか10の機能しか使用していないことを実証した。
- 参考スコア(独自算出の注目度): 2.0073274354053736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting default is essential for banks to ensure profitability and financial stability. While modern machine learning methods often outperform traditional regression techniques, their lack of transparency limits their use in regulated environments. Explainable artificial intelligence (XAI) has emerged as a solution in domains like credit scoring. However, most XAI research focuses on post-hoc interpretation of black-box models, which does not produce models lightweight or transparent enough to meet regulatory requirements, such as those for Internal Ratings-Based (IRB) models. This paper proposes a hybrid approach: post-hoc interpretations of black-box models guide feature selection, followed by training glass-box models that maintain both predictive power and transparency. Using the Lending Club dataset, we demonstrate that this approach achieves performance comparable to a benchmark black-box model while using only 10 features - an 88.5% reduction. In our example, SHapley Additive exPlanations (SHAP) is used for feature selection, eXtreme Gradient Boosting (XGBoost) serves as the benchmark and the base black-box model, and Explainable Boosting Machine (EBM) and Penalized Logistic Tree Regression (PLTR) are the investigated glass-box models. We also show that model refinement using feature interaction analysis, correlation checks, and expert input can further enhance model interpretability and robustness.
- Abstract(参考訳): 銀行が収益性と金融安定を確保するためには、デフォルトの予測が不可欠だ。
現代の機械学習手法は従来の回帰手法よりも優れていることが多いが、透明性の欠如は規制された環境での使用を制限する。
説明可能な人工知能(XAI)は、クレジットスコアリングのような分野のソリューションとして登場した。
しかしながら、ほとんどのXAI研究は、内部レーティングベース(IRB)モデルのような規制要件を満たすほど軽量で透明なモデルを生産しないブラックボックスモデルのポストホックな解釈に焦点を当てている。
本稿では,ブラックボックスモデルから特徴選択を導出するポストホックな解釈と,予測能力と透明性を両立するガラスボックスモデルを訓練するハイブリッドアプローチを提案する。
Lending Clubデータセットを使用して、このアプローチがベンチマークブラックボックスモデルに匹敵するパフォーマンスを実現し、わずか10の機能(88.5%削減)しか使用していないことを実証した。
我々の例では、SHAP(SHapley Additive exPlanations)が特徴選択に使われ、eXtreme Gradient Boosting(XGBoost)がベンチマークおよびベースブラックボックスモデルとして機能し、Explainable Boosting Machine(EBM)とPenalized Logistic Tree Regression(PLTR)が調査されたガラスボックスモデルである。
また,機能相互作用解析,相関チェック,エキスパート入力を用いたモデル改良により,モデルの解釈可能性やロバスト性をさらに向上させることができることを示す。
関連論文リスト
- Financial Fraud Detection Using Explainable AI and Stacking Ensemble Methods [0.6642919568083927]
本稿では,XGBoost,LightGBM,CatBoostという,勾配促進モデルの積み重ねアンサンブルを組み合わせた不正検出フレームワークを提案する。
XAI技術は、モデルの決定の透明性と解釈可能性を高めるために使用される。
論文 参考訳(メタデータ) (2025-05-15T07:53:02Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
我々は、レンズを通して自己改善の能力について、新たな視点を提供する。
言語モデルは、正しい応答を生成する場合よりも、応答品質の検証が優れているという観察に感銘を受けて、後学習において、モデル自体を検証対象として、自己改善を形式化する。
SFTとRLHFに基づく自己改善アルゴリズムの2つの自然ファミリーを解析する。
論文 参考訳(メタデータ) (2024-12-02T20:24:17Z) - Black-Box Tuning of Vision-Language Models with Effective Gradient
Approximation [71.21346469382821]
ブラックボックスモデルに対するテキストプロンプト最適化と出力特徴適応のための協調ブラックボックスチューニング(CBBT)を導入する。
CBBTは11のダウンストリームベンチマークで広範囲に評価され、既存のブラックボックスVL適応法と比較して顕著に改善されている。
論文 参考訳(メタデータ) (2023-12-26T06:31:28Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Leveraging Model-based Trees as Interpretable Surrogate Models for Model
Distillation [3.5437916561263694]
代理モデルは、複雑で強力なブラックボックス機械学習モデルを振り返りに解釈する上で重要な役割を果たす。
本稿では,決定規則により特徴空間を解釈可能な領域に分割する代理モデルとしてモデルベースツリーを用いることに焦点を当てる。
4つのモデルベースツリーアルゴリズム(SLIM, GUIDE, MOB, CTree)を比較した。
論文 参考訳(メタデータ) (2023-10-04T19:06:52Z) - GAM(e) changer or not? An evaluation of interpretable machine learning
models based on additive model constraints [5.783415024516947]
本稿では,一連の固有解釈可能な機械学習モデルについて検討する。
5つのGAMの予測特性を従来のMLモデルと比較した。
論文 参考訳(メタデータ) (2022-04-19T20:37:31Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Designing Inherently Interpretable Machine Learning Models [0.0]
本質的には、MLモデルは透明性と説明可能性のために採用されるべきである。
モデルに依存しない説明性を持つブラックボックスモデルは、規制の精査の下ではより防御が難しい。
論文 参考訳(メタデータ) (2021-11-02T17:06:02Z) - Recurrence-Aware Long-Term Cognitive Network for Explainable Pattern
Classification [0.0]
構造化データの解釈可能なパターン分類のためのLCCNモデルを提案する。
本手法は, 決定過程における各特徴の関連性を定量化し, 説明を提供する独自のメカニズムを提供する。
解釈可能なモデルでは,最先端の白黒ボックスと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2021-07-07T18:14:50Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
本研究では,ランダムフォレスト (RF) 解釈のための新しい可視化手法である Explainable Matrix (ExMatrix) を提案する。
単純なマトリックスのようなメタファで、行はルール、列は特徴、セルはルールを述語する。
ExMatrixの適用性は、異なる例を通じて確認され、RFモデルの解釈可能性を促進するために実際にどのように使用できるかを示している。
論文 参考訳(メタデータ) (2020-05-08T21:03:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。