論文の概要: Drug Repurposing Using Deep Embedded Clustering and Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2509.11493v1
- Date: Mon, 15 Sep 2025 01:04:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:23.110084
- Title: Drug Repurposing Using Deep Embedded Clustering and Graph Neural Networks
- Title(参考訳): ディープ組込みクラスタリングとグラフニューラルネットワークを用いた薬物再資源化
- Authors: Luke Delzer, Robert Kroleski, Ali K. AlShami, Jugal Kalita,
- Abstract要約: 教師なし深層クラスタリングと教師付きグラフニューラルネットワークリンク予測を組み合わせた機械学習パイプラインを提案する。
合計で9,022種類の薬物が35個のクラスターに分割され、平均シルエットスコアは0.8550である。
グラフニューラルネットワークは、0.901の予測精度、0.960の曲線下での受信特性領域、0.901のF1スコアなど、強い統計的性能を達成した。
- 参考スコア(独自算出の注目度): 10.858347895657737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drug repurposing has historically been an economically infeasible process for identifying novel uses for abandoned drugs. Modern machine learning has enabled the identification of complex biochemical intricacies in candidate drugs; however, many studies rely on simplified datasets with known drug-disease similarities. We propose a machine learning pipeline that uses unsupervised deep embedded clustering, combined with supervised graph neural network link prediction to identify new drug-disease links from multi-omic data. Unsupervised autoencoder and cluster training reduced the dimensionality of omic data into a compressed latent embedding. A total of 9,022 unique drugs were partitioned into 35 clusters with a mean silhouette score of 0.8550. Graph neural networks achieved strong statistical performance, with a prediction accuracy of 0.901, receiver operating characteristic area under the curve of 0.960, and F1-Score of 0.901. A ranked list comprised of 477 per-cluster link probabilities exceeding 99 percent was generated. This study could provide new drug-disease link prospects across unrelated disease domains, while advancing the understanding of machine learning in drug repurposing studies.
- Abstract(参考訳): 薬物再資源化は歴史的に、放棄された薬物の新規使用を特定するための経済的に不可能なプロセスであった。
現代の機械学習は、候補薬物の複雑な生化学的複雑さを識別することを可能にするが、多くの研究は、既知の薬物の放出類似性を持つ単純なデータセットに依存している。
本稿では,非教師付き深層クラスタリングと教師付きグラフニューラルネットワークリンク予測を組み合わせた機械学習パイプラインを提案する。
教師なしオートエンコーダとクラスタトレーニングは、オミックデータの次元性を圧縮潜在埋め込みに還元した。
合計で9,022種類の薬物が35個のクラスターに分割され、平均シルエットスコアは0.8550である。
グラフニューラルネットワークは、0.901の予測精度、0.960の曲線下での受信特性領域、0.901のF1スコアなど、強い統計的性能を達成した。
クラスタごとのリンク確率が99%を超える477のランクリストが作成された。
この研究は、薬物再資源化研究における機械学習の理解を深めつつ、無関係な疾患領域にまたがる新しい薬物の排出リンクを提供する可能性がある。
関連論文リスト
- Multiscale Topology in Interactomic Network: From Transcriptome to
Antiaddiction Drug Repurposing [0.3683202928838613]
米国における薬物依存の激化は、革新的な治療戦略の緊急の必要性を浮き彫りにしている。
本研究は,オピオイドおよびコカイン依存症治療の薬物再服用候補を探索するための,革新的で厳格な戦略に着手した。
論文 参考訳(メタデータ) (2023-12-03T04:01:38Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
本稿では,新興医薬品の相互作用を効果的に予測できるグラフニューラルネットワーク(GNN)であるEmerGNNを提案する。
EmerGNNは、薬物ペア間の経路を抽出し、ある薬物から他の薬物へ情報を伝達し、関連する生物学的概念を経路に組み込むことで、薬物のペアワイズ表現を学習する。
全体として、EmerGNNは、新興薬物の相互作用を予測する既存のアプローチよりも精度が高く、バイオメディカルネットワーク上で最も関連性の高い情報を特定できる。
論文 参考訳(メタデータ) (2023-11-15T06:34:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Neural Bandits for Data Mining: Searching for Dangerous Polypharmacy [63.135687276599114]
一部の多薬局は、不適切とみなされており、死亡や入院などの健康上の有害な結果に関係している可能性がある。
我々は、クレームデータセットを効率的にマイニングし、薬物の組み合わせと健康結果の関係の予測モデルを構築するためのOptimNeuralTS戦略を提案する。
提案手法では,最大72%のPIPを検出でき,平均精度は99%であり,30000タイムステップで検出できる。
論文 参考訳(メタデータ) (2022-12-10T03:43:23Z) - A Deep Learning Approach to the Prediction of Drug Side-Effects on
Molecular Graphs [2.4087148947930634]
グラフニューラルネットワークを用いて薬物副作用を予測する手法を開発した。
私たちは、自由にアクセス可能で、確立されたデータソースからデータセットを構築します。
その結果,本手法は,多くのパラメータや指標の下で,分類能力の向上を図っている。
論文 参考訳(メタデータ) (2022-11-30T10:12:41Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
計算スクリーニングは 薬物の組み合わせを優先する重要な方法になっています
DeepDDSは16%以上の予測精度で競合手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-06T08:25:43Z) - Predicting Potential Drug Targets Using Tensor Factorisation and
Knowledge Graph Embeddings [4.415977307120617]
我々は、病気の潜在的な薬物標的(遺伝子またはタンパク質)を予測するための新しいテンソル分解モデルを開発した。
薬物発見指向の知識グラフから得られた遺伝子表現を用いてデータを豊かにし,提案手法を適用し,未確認ターゲットと解離ペアの臨床的結果を予測する。
論文 参考訳(メタデータ) (2021-05-20T16:19:00Z) - Finding Patient Zero: Learning Contagion Source with Graph Neural
Networks [67.3415507211942]
感染源の特定は、感染の感染経路に関する重要な洞察を与えることができる。
既存の方法はグラフ理論測度と高価なメッセージパッシングアルゴリズムを用いる。
グラフニューラルネットワーク(GNN)を用いてP0を学習し,この問題を再考する。
論文 参考訳(メタデータ) (2020-06-21T21:12:44Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。