論文の概要: RadarLLM: Adapting Pretrained Large Language Models for Marine Radar Target Detection with Preference-aware Loss
- arxiv url: http://arxiv.org/abs/2509.12089v1
- Date: Mon, 15 Sep 2025 16:16:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 17:26:23.39179
- Title: RadarLLM: Adapting Pretrained Large Language Models for Marine Radar Target Detection with Preference-aware Loss
- Title(参考訳): RadarLLM: 優先認識損失による海面レーダターゲット検出のための事前訓練済み大言語モデル適応
- Authors: Qiying Hu,
- Abstract要約: 本稿では,RadarLLMについて紹介する。
RadarLLMは、さまざまな検出シナリオで、最先端のベースラインを一貫して上回る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in pre-trained large language models (LLMs) have demonstrated their capacities to capture universal knowledge, making them promising general-purpose optimization solvers for wireless signal processing. Motivated by these findings, we take the first step towards fine-tuning pre-trained LLMs for the effective analysis of radar signal features in marine target detection tasks. Nevertheless, directly fine-tuning pre-trained LLMs on marine target detection tasks tends to suffer from pronounced overfitting, particularly in challenging low signal-to-clutter ratio (SCR) scenarios. This overfitting primarily stems from the model's tendency to memorize spurious or noisy feature patterns rather than learning discriminative structures that generalize well to unseen data. To address this challenge, we introduce RadarLLM, a novel fine-tuning framework that utilizes an effective preference-aware loss. Unlike conventional training strategies that uniformly optimize all feature tokens, this loss function selectively optimizes different feature patches based on their online evaluated learning values, thus guiding the model to focus on the most generalizable patterns during optimization. We theoretically demonstrate the effectiveness of the evaluated learning values by transforming the problem as selecting useful feature tokens. Extensive experiments on real-world marine radar datasets show that 1) the proposed loss function is much better than the original one, with particularly significant gains in challenging low SCR scenarios and 2) RadarLLM consistently outperforms state-of-the-art baselines across diverse detection scenarios, with particularly notable gains under limited training data conditions.
- Abstract(参考訳): 近年のLLM(pre-trained large language model)の進歩は、その普遍的な知識を捉える能力を示し、無線信号処理のための汎用最適化を約束している。
これらの知見に触発されて,海洋目標検出タスクにおけるレーダ信号の特徴を効果的に解析するために,訓練済みのLLMを微調整する第一歩を踏み出した。
それでも、海洋目標検出タスクを直接微調整したLLMは、特にSCR(低信号対クラッタ比)のシナリオにおいて、明らかに過度な適合に悩まされる傾向にある。
この過剰適合は主に、目に見えないデータによく一般化する識別的構造を学ぶよりも、スプリケートまたはノイズの多い特徴パターンを記憶する傾向に起因している。
この課題に対処するために,効果的な選好認識損失を利用した新しい微調整フレームワークであるRadarLLMを紹介する。
すべての特徴トークンを均一に最適化する従来のトレーニング戦略とは異なり、この損失関数はオンライン評価された学習値に基づいて異なる特徴パッチを選択的に最適化する。
有用な特徴トークンの選択として問題を変換することで,評価された学習値の有効性を理論的に実証する。
実世界の海洋レーダーデータセットの大規模な実験は、このことを示している
1) 提案した損失関数は,従来のものよりもはるかに優れており,特に低SCRシナリオに挑戦する際の顕著な利得がある。
2) RadarLLMは、訓練データ条件が限定された場合、さまざまな検出シナリオにおいて、最先端のベースラインを一貫して上回る。
関連論文リスト
- When marine radar target detection meets pretrained large language models [19.91452033424555]
機能前処理を大規模言語モデル(LLM)と統合するフレームワークを提案する。
我々の前処理モジュールは、レーダシーケンスの特徴をトークン化し、不定形セグメントをフィルタリングするためにパッチ選択アルゴリズムを適用し、選択したパッチを事前訓練されたLLMの特徴空間と互換性のある埋め込みに投影する。
実験により,提案手法は教師あり学習試験における最先端のベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2025-09-15T16:38:13Z) - Enhancing Training Data Attribution with Representational Optimization [57.61977909113113]
トレーニングデータ属性法は、トレーニングデータがモデルの予測にどのように影響するかを測定することを目的としている。
本稿では,タスク固有表現とモデル整合表現をTDAで明示的に学習することで,このギャップを埋める表現ベースアプローチであるAirRepを提案する。
AirRepは、属性品質に合わせて調整されたトレーニング可能なエンコーダと、グループワイドの影響を正確に見積もるアテンションベースのプール機構の2つの重要なイノベーションを紹介している。
論文 参考訳(メタデータ) (2025-05-24T05:17:53Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
モデルの一般化動作は,事前記憶列車の精度と呼ばれるトレーニング指標によって効果的に特徴づけられることがわかった。
モデルの学習行動と一般化を結びつけることで、トレーニング戦略に目標とする改善を導くことができる。
論文 参考訳(メタデータ) (2024-11-12T09:52:40Z) - Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7ワンステージ検出器は、新しいメタラーニングトレーニングフレームワークが組み込まれている。
この変換により、検出器はFSODのタスクに十分対応できると同時に、その固有の軽量化の利点を活かすことができる。
提案検出器の有効性を検証するため, 現状の検出器と性能比較を行った。
論文 参考訳(メタデータ) (2024-04-29T04:56:52Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z) - A Reinforcement Learning based approach for Multi-target Detection in
Massive MIMO radar [12.982044791524494]
本稿では,MMIMO(Multiple input Multiple output)認知レーダ(CR)におけるマルチターゲット検出の問題点について考察する。
本稿では,未知の外乱統計の存在下での認知的マルチターゲット検出のための強化学習(RL)に基づくアルゴリズムを提案する。
定常環境と動的環境の両方において提案したRLアルゴリズムの性能を評価するため, 数値シミュレーションを行った。
論文 参考訳(メタデータ) (2020-05-10T16:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。