論文の概要: Enhancing Dual Network Based Semi-Supervised Medical Image Segmentation with Uncertainty-Guided Pseudo-Labeling
- arxiv url: http://arxiv.org/abs/2509.13084v1
- Date: Tue, 16 Sep 2025 13:40:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-17 17:50:53.112546
- Title: Enhancing Dual Network Based Semi-Supervised Medical Image Segmentation with Uncertainty-Guided Pseudo-Labeling
- Title(参考訳): 不確かさ誘導擬似ラベルによる半スーパービジョン医用画像分割の強化
- Authors: Yunyao Lu, Yihang Wu, Ahmad Chaddad, Tareef Daqqaq, Reem Kateb,
- Abstract要約: 本稿では,デュアルネットワークアーキテクチャに基づく新しい半教師付き3次元医用画像分割フレームワークを提案する。
具体的には,クロス・擬似とエントロピーフィルタの両方を用いたクロス・コンシステンシー・エンハンスメント・モジュールについて検討し,ノイズの多い擬似ラベルを減らす。
さらに、教師付きコントラスト学習機構を用いて、不確実なボクセル特徴を信頼性の高いクラスプロトタイプと整合させる。
- 参考スコア(独自算出の注目度): 5.1962665598872135
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the remarkable performance of supervised medical image segmentation models, relying on a large amount of labeled data is impractical in real-world situations. Semi-supervised learning approaches aim to alleviate this challenge using unlabeled data through pseudo-label generation. Yet, existing semi-supervised segmentation methods still suffer from noisy pseudo-labels and insufficient supervision within the feature space. To solve these challenges, this paper proposes a novel semi-supervised 3D medical image segmentation framework based on a dual-network architecture. Specifically, we investigate a Cross Consistency Enhancement module using both cross pseudo and entropy-filtered supervision to reduce the noisy pseudo-labels, while we design a dynamic weighting strategy to adjust the contributions of pseudo-labels using an uncertainty-aware mechanism (i.e., Kullback-Leibler divergence). In addition, we use a self-supervised contrastive learning mechanism to align uncertain voxel features with reliable class prototypes by effectively differentiating between trustworthy and uncertain predictions, thus reducing prediction uncertainty. Extensive experiments are conducted on three 3D segmentation datasets, Left Atrial, NIH Pancreas and BraTS-2019. The proposed approach consistently exhibits superior performance across various settings (e.g., 89.95\% Dice score on left Atrial with 10\% labeled data) compared to the state-of-the-art methods. Furthermore, the usefulness of the proposed modules is further validated via ablation experiments.
- Abstract(参考訳): 医用画像セグメンテーションモデルの顕著な性能にもかかわらず、大量のラベル付きデータに頼ることは現実の状況では現実的ではない。
半教師付き学習アプローチは、擬似ラベル生成によるラベルなしデータによるこの課題を軽減することを目的としている。
しかし、既存の半教師付きセグメンテーション手法は、未だにノイズの多い擬似ラベルに悩まされ、特徴空間内での監督が不十分である。
これらの課題を解決するために,デュアルネットワークアーキテクチャに基づく新しい半教師付き3次元医用画像分割フレームワークを提案する。
具体的には,クロス・擬似フィルタとエントロピーフィルタの両方を用いたクロス・コンシステンシー・エンハンスメント・モジュールを用いて,ノイズの多い擬似ラベルを減らすとともに,不確実性認識機構(Kulback-Leibler divergence)を用いて擬似ラベルの寄与を調整するための動的重み付け戦略を設計する。
さらに,信頼に値する予測と不確実な予測を効果的に区別することにより,不確実なボクセル特徴を信頼性の高いクラスプロトタイプと整合させることにより,予測の不確実性を低減できる自己教師付きコントラスト学習機構を用いる。
大規模な実験は3つの3次元セグメンテーションデータセット、Left Atrial、NIH Pancreas、BraTS-2019で実施された。
提案手法は, 最先端の手法と比較して, 左心房におけるDiceスコアの89.95 %, ラベル付きデータ10\%など, 様々な設定において常に優れた性能を示す。
さらに, アブレーション実験により, 提案モジュールの有用性を検証した。
関連論文リスト
- Semi-Supervised Medical Image Segmentation via Dual Networks [1.904929457002693]
本稿では,大規模な専門家ラベル付きデータセットへの依存を減らすために,革新的な半教師付き3次元医用画像分割法を提案する。
本稿では,コンテキスト情報を用いた既存手法の制約に対処するデュアルネットワークアーキテクチャを提案する。
臨床磁気共鳴画像実験により,我々のアプローチは最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2025-05-23T09:59:26Z) - SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation [18.223854197580145]
医用画像分割のための半教師付き学習(SSL)は難しいが、非常に実践的な課題である。
セムシム(SemSim)という名前のFixMatchに基づく新しいフレームワークを提案する。
SemSimは3つの公開セグメンテーションベンチマークで最先端の手法よりも一貫した改善をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-17T12:31:37Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
この話題は、3次元の点雲のセグメンテーションで広く研究されている。
近年まで、擬似ラベルは、限られた地道ラベルによる訓練を容易にするために広く用いられてきた。
既存の擬似ラベリングアプローチは、重複しないデータのノイズやバリエーションに悩まされる可能性がある。
本研究では,学習用擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭める学習戦略を提案する。
論文 参考訳(メタデータ) (2024-08-29T13:31:15Z) - Decoupled Pseudo-labeling for Semi-Supervised Monocular 3D Object Detection [108.672972439282]
SSM3ODに対するDPL(decoupled pseudo-labeling)アプローチを提案する。
提案手法は,擬似ラベルを効率的に生成するためのDPGモジュールを特徴とする。
また,擬似ラベルの雑音深度監視による最適化競合を軽減するために,DGPモジュールを提案する。
論文 参考訳(メタデータ) (2024-03-26T05:12:18Z) - Leveraging Unlabeled Data for 3D Medical Image Segmentation through
Self-Supervised Contrastive Learning [3.7395287262521717]
現在の3次元半教師付きセグメンテーション法は、文脈情報の限定的考慮のような重要な課題に直面している。
両者の相違を探索し、活用するために設計された2つの個別のワークを導入し、最終的に誤った予測結果を修正した。
我々は、信頼できない予測と信頼できない予測を区別するために、自己教師付きコントラスト学習パラダイムを採用している。
論文 参考訳(メタデータ) (2023-11-21T14:03:16Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
我々は、RCPS(Rectified Contrastive Pseudo Supervision)という、新しい半教師付きセグメンテーション手法を提案する。
RCPSは、修正された疑似監督とボクセルレベルのコントラスト学習を組み合わせて、半教師付きセグメンテーションの有効性を向上させる。
実験結果から, 半教師付き医用画像分割における最先端手法と比較して, 高いセグメンテーション性能が得られた。
論文 参考訳(メタデータ) (2023-01-13T12:03:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。