論文の概要: Intelligent Healthcare Imaging Platform An VLM-Based Framework for Automated Medical Image Analysis and Clinical Report Generation
- arxiv url: http://arxiv.org/abs/2509.13590v1
- Date: Tue, 16 Sep 2025 23:15:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-18 18:41:50.672083
- Title: Intelligent Healthcare Imaging Platform An VLM-Based Framework for Automated Medical Image Analysis and Clinical Report Generation
- Title(参考訳): 医用画像の自動解析と臨床報告作成のためのVLMベースのインテリジェントヘルスケアイメージングプラットフォーム
- Authors: Samer Al-Hamadani,
- Abstract要約: 本稿では,視覚言語モデル(VLM)を活用した医用画像解析のためのインテリジェントマルチモーダルフレームワークを提案する。
このフレームワークはGoogle Gemini 2.5 Flashを統合し、腫瘍を自動的に検出し、CT、MRI、X線、超音波などの複数の画像モダリティで臨床報告を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of artificial intelligence (AI) in healthcare imaging has revolutionized diagnostic medicine and clinical decision-making processes. This work presents an intelligent multimodal framework for medical image analysis that leverages Vision-Language Models (VLMs) in healthcare diagnostics. The framework integrates Google Gemini 2.5 Flash for automated tumor detection and clinical report generation across multiple imaging modalities including CT, MRI, X-ray, and Ultrasound. The system combines visual feature extraction with natural language processing to enable contextual image interpretation, incorporating coordinate verification mechanisms and probabilistic Gaussian modeling for anomaly distribution. Multi-layered visualization techniques generate detailed medical illustrations, overlay comparisons, and statistical representations to enhance clinical confidence, with location measurement achieving 80 pixels average deviation. Result processing utilizes precise prompt engineering and textual analysis to extract structured clinical information while maintaining interpretability. Experimental evaluations demonstrated high performance in anomaly detection across multiple modalities. The system features a user-friendly Gradio interface for clinical workflow integration and demonstrates zero-shot learning capabilities to reduce dependence on large datasets. This framework represents a significant advancement in automated diagnostic support and radiological workflow efficiency, though clinical validation and multi-center evaluation are necessary prior to widespread adoption.
- Abstract(参考訳): 医療画像における人工知能(AI)の急速な進歩は、診断医療と臨床意思決定プロセスに革命をもたらした。
本研究は、医用画像解析のためのインテリジェント・マルチモーダル・フレームワークで、医療診断にビジョン・ランゲージ・モデル(VLM)を活用する。
このフレームワークはGoogle Gemini 2.5 Flashを統合し、腫瘍を自動的に検出し、CT、MRI、X線、超音波などの複数の画像モダリティで臨床報告を生成する。
このシステムは,視覚的特徴抽出と自然言語処理を併用して文脈的画像解釈を実現し,座標検証機構と確率ガウスモデルを用いて異常分布を推定する。
多層可視化技術は、80ピクセル平均偏差を達成し、臨床信頼性を高めるために詳細な医用画像、オーバーレイ比較、統計的表現を生成する。
結果処理は、正確なプロンプトエンジニアリングとテキスト分析を利用して、解釈可能性を維持しながら構造化された臨床情報を抽出する。
実験により,複数モードにわたる異常検出において高い性能を示した。
このシステムは、臨床ワークフロー統合のためのユーザフレンドリーなGradioインターフェースを備え、大規模なデータセットへの依存を減らすためにゼロショット学習機能を示す。
この枠組みは, 臨床検査と多施設評価が普及する以前に必要だが, 自動診断支援と放射線学的ワークフロー効率の大幅な向上を図っている。
関連論文リスト
- RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabricは、総合的なCXR解釈のための視覚的およびテキスト分析を統合するマルチエージェント、マルチモーダル推論フレームワークである。
システムは、病理診断に特殊なCXRエージェント、正確な解剖学的構造に視覚所見をマッピングする解剖学的解釈エージェント、および視覚的、解剖学的、臨床データを透明かつ証拠に基づく診断に合成する大規模なマルチモーダル推論モデルを利用した推論エージェントを使用する。
論文 参考訳(メタデータ) (2025-06-17T03:10:33Z) - CBM-RAG: Demonstrating Enhanced Interpretability in Radiology Report Generation with Multi-Agent RAG and Concept Bottleneck Models [1.7042756021131187]
本稿では,CBM(Concept Bottleneck Models)とRAG(Multi-Agent Retrieval-Augmented Generation)システムを組み合わせた自動放射線学レポート生成フレームワークを提案する。
CBMは胸部X線の特徴を人間の理解できない臨床概念にマッピングし、透明な疾患分類を可能にする。
RAGシステムはマルチエージェントのコラボレーションと外部知識を統合し、文脈的にリッチなエビデンスベースのレポートを生成する。
論文 参考訳(メタデータ) (2025-04-29T16:14:55Z) - iMedImage Technical Report [5.0953390013898705]
染色体核型解析は遺伝性疾患の診断に不可欠であるが, 構造異常の検出は依然として困難である。
一般医用画像認識のためのエンド・ツー・エンド・エンド・モデルiMedImageを開発した。
論文 参考訳(メタデータ) (2025-03-27T03:25:28Z) - RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [64.66825253356869]
本稿では,複数の粒度で画像の類似度を決定するために,高密度ラジオロジーレポートを利用した新しい手法を提案する。
我々は、胸部X線用MIMIC-IRとCTスキャン用CTRATE-IRの2つの総合的な医用画像検索データセットを構築した。
RadIR-CXR と Model-ChestCT という2つの検索システムを開発し,従来の画像画像検索と画像レポート検索に優れた性能を示す。
論文 参考訳(メタデータ) (2025-03-06T17:43:03Z) - Multi-Scale Transformer Architecture for Accurate Medical Image Classification [4.578375402082224]
本研究では,トランスフォーマーアーキテクチャを改良したAIによる皮膚病変分類アルゴリズムを提案する。
マルチスケールな特徴融合機構の統合と自己認識プロセスの洗練により、このモデルはグローバルな特徴とローカルな特徴の両方を効果的に抽出する。
ISIC 2017データセットのパフォーマンス評価は、改良されたTransformerが既存のAIモデルを上回ることを示している。
論文 参考訳(メタデータ) (2025-02-10T08:22:25Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
人工知能(AI)に基づく合成データ生成は、臨床医学の届け方を変えることができる。
本研究は,無線カプセル内視鏡(WCE)画像を用いた炎症性腸疾患(IBD)の診断における概念実証による医療用SDGの臨床評価に焦点を当てた。
その結果、TIDE-IIは、最先端の生成モデルと比較して品質が向上し、臨床的に可塑性で、非常に現実的なWCE画像を生成することがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Automated Retinal Image Analysis and Medical Report Generation through Deep Learning [3.4447129363520337]
網膜疾患の増加は、医療システムにとって大きな課題となっている。
網膜画像から医療報告を生成する従来の方法は、手動による解釈に依存している。
この論文は、網膜画像の医療レポート生成を自動化する人工知能の可能性について考察する。
論文 参考訳(メタデータ) (2024-08-14T07:47:25Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。