論文の概要: Improving Context Fidelity via Native Retrieval-Augmented Reasoning
- arxiv url: http://arxiv.org/abs/2509.13683v1
- Date: Wed, 17 Sep 2025 04:28:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-18 18:41:50.713893
- Title: Improving Context Fidelity via Native Retrieval-Augmented Reasoning
- Title(参考訳): 固有検索強化推論による文脈忠実度の向上
- Authors: Suyuchen Wang, Jinlin Wang, Xinyu Wang, Shiqi Li, Xiangru Tang, Sirui Hong, Xiao-Wen Chang, Chenglin Wu, Bang Liu,
- Abstract要約: 大規模言語モデル(LLM)は、しばしば文脈の忠実さと闘い、提供された情報に基づいて質問に答えるときに矛盾する答えを生み出す。
提案するCAREは, LLMに対して, モデル独自の検索機能を用いて, 推論プロセス内での文脈内証拠を明示的に統合するように教える, 新たなネイティブ検索拡張推論フレームワークである。
提案手法では,限定ラベル付きエビデンスデータが必要であり,推論チェーン内の戦略的に検索されたインコンテキストトークンを通じて,検索精度と回答生成性能を著しく向上させる。
- 参考スコア(独自算出の注目度): 35.50952279309109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) often struggle with context fidelity, producing inconsistent answers when responding to questions based on provided information. Existing approaches either rely on expensive supervised fine-tuning to generate evidence post-answer or train models to perform web searches without necessarily improving utilization of the given context. We propose CARE, a novel native retrieval-augmented reasoning framework that teaches LLMs to explicitly integrate in-context evidence within their reasoning process with the model's own retrieval capabilities. Our method requires limited labeled evidence data while significantly enhancing both retrieval accuracy and answer generation performance through strategically retrieved in-context tokens in the reasoning chain. Extensive experiments on multiple real-world and counterfactual QA benchmarks demonstrate that our approach substantially outperforms supervised fine-tuning, traditional retrieval-augmented generation methods, and external retrieval solutions. This work represents a fundamental advancement in making LLMs more accurate, reliable, and efficient for knowledge-intensive tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、しばしば文脈の忠実さと闘い、提供された情報に基づいて質問に答えるときに矛盾する答えを生み出す。
既存のアプローチは、調査後の証拠を生成するための高価な微調整や、与えられたコンテキストの利用を改善することなくWeb検索を行うためのトレーニングモデルに頼っている。
提案するCAREは, LLMに対して, モデル独自の検索機能を用いて, 推論プロセス内でのコンテキスト内証拠を明示的に統合することを教える, 新たなネイティブ検索拡張推論フレームワークである。
提案手法では,限定ラベル付きエビデンスデータが必要であり,推論チェーン内の戦略的に検索されたインコンテキストトークンを通じて,検索精度と回答生成性能を著しく向上させる。
複数の実世界および対実QAベンチマークに対する大規模な実験により、我々の手法は教師付き微調整、従来の検索拡張生成法、および外部検索ソリューションよりも大幅に優れていることが示された。
この研究は、LLMを知識集約的なタスクに対してより正確で信頼性があり、効率的にするための基本的な進歩である。
関連論文リスト
- Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger [51.01841635655944]
大規模視覚言語モデル(LVLM)の最近の進歩は、視覚質問応答(VQA)タスクのパフォーマンスを著しく改善している。
既存の手法は、推論例による知識の不足や、抽出された知識からの不規則な応答など、依然として課題に直面している。
我々は、Reasoning Context-enriched knowledge baseとTree Search re-level methodを構築し、LVLMを強化したRCTSと呼ばれるマルチモーダルRAGフレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-09T14:00:57Z) - KnowTrace: Bootstrapping Iterative Retrieval-Augmented Generation with Structured Knowledge Tracing [64.38243807002878]
我々は、大規模言語モデルにおけるコンテキスト過負荷を軽減するためのエレガントなRAGフレームワークであるKnowTraceを紹介する。
KnowTraceは、必要な知識三つ子を自律的に追跡して、入力された質問に関連する特定の知識グラフを整理する。
3つのマルチホップ質問応答ベンチマークで、既存のメソッドを一貫して上回っている。
論文 参考訳(メタデータ) (2025-05-26T17:22:20Z) - Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging [7.047640531842663]
InForageは、動的情報探索プロセスとして検索強化推論を形式化する強化学習フレームワークである。
我々は,複雑な実世界のWebタスクに対する反復探索と推論のトラジェクトリをキャプチャするヒューマンガイドデータセットを構築した。
これらの結果は、堅牢で適応的で効率的な推論エージェントの構築におけるInForageの有効性を強調している。
論文 参考訳(メタデータ) (2025-05-14T12:13:38Z) - SEM: Reinforcement Learning for Search-Efficient Large Language Models [26.075903427834838]
大きな言語モデル(LLM)は、推論だけでなく、外部ツールの呼び出しでもその能力を実証している。
既存の強化学習アプローチは、しばしば冗長な探索行動を引き起こす。
本研究では,学習後強化学習フレームワークであるSEMを提案する。
論文 参考訳(メタデータ) (2025-05-12T09:45:40Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcherは、大規模言語モデルの検索能力を高めるために設計された、2段階の結果に基づく新しいRLアプローチである。
本フレームワークは, コールドスタート時に, プロセス報酬や蒸留を必要とせず, RLのみに依存している。
提案手法は, クローズドソースGPT-4o-miniと比較して, 従来の強力なRAG法よりも有意に優れていた。
論文 参考訳(メタデータ) (2025-03-07T17:14:44Z) - Contextualizing Search Queries In-Context Learning for Conversational Rewriting with LLMs [0.0]
本稿では,数発の対話型クエリ書き換えのための新しいアプローチであるPrompt-Guided In-Context Learningを紹介する。
提案手法では,タスク記述,入出力形式仕様,図示的な例を取り入れ,慎重に設計したプロンプトを用いている。
ベンチマークデータセットであるTRECとTaskmaster-1の実験は、我々のアプローチが強いベースラインを大幅に上回ることを示した。
論文 参考訳(メタデータ) (2025-02-20T20:02:42Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented system を提案する。
VERAは、外部検索が必要なかどうかを最初にチェックし、検索したコンテキストの関連性と冗長性を評価し、非必要情報の除去のために精査する評価器-既存のLCMを使用している。
論文 参考訳(メタデータ) (2024-09-18T16:10:47Z) - Retrieval Meets Reasoning: Dynamic In-Context Editing for Long-Text Understanding [11.5386284281652]
動的インテキスト編集による情報検索を再現する新しい手法を提案する。
長大な文脈を拡張可能な外部知識として扱うことにより,本手法は対話的に関連情報を収集・統合する。
実験結果から,提案手法はコンテキスト限定LLMを効果的に活用し,マルチホップ推論に有効であることを示す。
論文 参考訳(メタデータ) (2024-06-18T06:54:28Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。