論文の概要: Explaining deep learning for ECG using time-localized clusters
- arxiv url: http://arxiv.org/abs/2509.15198v1
- Date: Thu, 18 Sep 2025 17:52:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-19 17:26:53.375381
- Title: Explaining deep learning for ECG using time-localized clusters
- Title(参考訳): 時間的局所クラスタを用いた心電図の深層学習
- Authors: Ahcène Boubekki, Konstantinos Patlatzoglou, Joseph Barker, Fu Siong Ng, Antônio H. Ribeiro,
- Abstract要約: 心電図解析に応用した畳み込みニューラルネットワークの新しい解釈可能性法を提案する。
本手法は,モデルの内部表現から時間的局所クラスタを抽出し,学習特性に応じてECGをセグメント化する。
これにより、異なる波形領域がモデルの予測にどのように貢献するかを可視化し、その決定の確実性を評価することができる。
- 参考スコア(独自算出の注目度): 6.244063807912304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has significantly advanced electrocardiogram (ECG) analysis, enabling automatic annotation, disease screening, and prognosis beyond traditional clinical capabilities. However, understanding these models remains a challenge, limiting interpretation and gaining knowledge from these developments. In this work, we propose a novel interpretability method for convolutional neural networks applied to ECG analysis. Our approach extracts time-localized clusters from the model's internal representations, segmenting the ECG according to the learned characteristics while quantifying the uncertainty of these representations. This allows us to visualize how different waveform regions contribute to the model's predictions and assess the certainty of its decisions. By providing a structured and interpretable view of deep learning models for ECG, our method enhances trust in AI-driven diagnostics and facilitates the discovery of clinically relevant electrophysiological patterns.
- Abstract(参考訳): 深層学習は心電図(ECG)解析を著しく進歩させ、従来の臨床能力を超えた自動アノテーション、疾患スクリーニング、予後を可能にする。
しかし、これらのモデルを理解することは、解釈を制限し、これらの発展から知識を得るという課題のままである。
本稿では,心電図解析に応用した畳み込みニューラルネットワークの新しい解釈可能性法を提案する。
本手法は,モデルの内部表現から時間的局所クラスタを抽出し,これらの表現の不確かさを定量化しながら,学習特性に従ってECGをセグメント化する。
これにより、異なる波形領域がモデルの予測にどのように貢献するかを可視化し、その決定の確実性を評価することができる。
本手法は,心電図の深層学習モデルの構造的,解釈可能なビューを提供することにより,AIによる診断の信頼性を高め,臨床的に関連する電気生理学的パターンの発見を容易にする。
関連論文リスト
- Explainable AI (XAI) for Arrhythmia detection from electrocardiograms [0.0]
深層学習は心電図(ECG)信号から高い精度の不整脈検出を可能にしているが、臨床応用には限界がある。
本研究では,時系列ECG分析に特化して適応した説明可能なAI(XAI)技術の適用について検討する。
論文 参考訳(メタデータ) (2025-08-24T10:44:24Z) - CardioPatternFormer: Pattern-Guided Attention for Interpretable ECG Classification with Transformer Architecture [0.40964539027092906]
解釈可能なECG分類のためのトランスフォーマーモデルであるCardioPatternFormerを提案する。
多様な心臓パターンを正確に識別し分類するために、洗練された注意機構を用いる。
微妙な異常を識別し、複数の共起条件を識別する。
論文 参考訳(メタデータ) (2025-05-26T19:36:58Z) - A CNN-based Local-Global Self-Attention via Averaged Window Embeddings for Hierarchical ECG Analysis [1.0844302367985357]
本稿では,この制限に対処するため,新しいLGA(Local-Global Attention ECG)モデルを提案する。
提案手法は,重なり合う畳み込みウィンドウから得られる埋め込みを平均化することでクエリを抽出する。
CODE-15データセットで行った実験は、LGA-ECGが最先端モデルより優れていることを示した。
論文 参考訳(メタデータ) (2025-04-13T01:21:18Z) - Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
既存のディープラーニング診断予測モデルと本質的な解釈性は、過去の診断や病院訪問の度に注意重みを割り当てることが多い。
我々は、パーソナライズされた簡潔で忠実な説明を提供するように設計された、自己説明型ハイパーグラフニューラルネットワークモデルSHyを紹介する。
SHyは高次疾患の相互作用を捉え、パーソナライズされた説明として異なる時間的表現型を抽出する。
論文 参考訳(メタデータ) (2025-02-15T06:33:02Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
短絡心電図記録から不整脈を検出するための病気特異的注意ベースディープラーニングモデル(DANet)を提案する。
新しいアイデアは、既存のディープニューラルネットワークにソフトコーディングまたはハードコーディングの波形拡張モジュールを導入することである。
DANetをソフトコーディングするためには、自己教師付き事前学習と2段階教師付きトレーニングを組み合わせた学習フレームワークも開発する。
論文 参考訳(メタデータ) (2024-07-25T13:27:10Z) - TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data [42.96821770394798]
TACCOは、EMHデータのハイパーグラフモデリングに基づいて、臨床概念と患者訪問のクラスターを共同で発見する新しいフレームワークである。
我々は,表現型分類と心血管リスク予測の下流臨床課題に対して,公共MIMIC-IIIデータセットとエモリー内部CRADLEデータセットを用いて実験を行った。
深層モデル解析,クラスタリング結果解析,臨床ケーススタディは,TACCOが提供した改良されたユーティリティと洞察に富んだ解釈をさらに検証する。
論文 参考訳(メタデータ) (2024-06-14T14:18:38Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - Identifying Electrocardiogram Abnormalities Using a
Handcrafted-Rule-Enhanced Neural Network [18.859487271034336]
我々は、深層学習に基づく心電図解析に臨床知識を提供するために、畳み込みニューラルネットワークにいくつかのルールを導入する。
我々の新しいアプローチは、既存の最先端の手法をかなり上回っている。
論文 参考訳(メタデータ) (2022-06-16T04:42:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。