論文の概要: Geometric Image Synchronization with Deep Watermarking
- arxiv url: http://arxiv.org/abs/2509.15208v1
- Date: Thu, 18 Sep 2025 17:56:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-19 17:26:53.386412
- Title: Geometric Image Synchronization with Deep Watermarking
- Title(参考訳): 深層透かしを用いた幾何学的画像同期
- Authors: Pierre Fernandez, Tomáš Souček, Nikola Jovanović, Hady Elsahar, Sylvestre-Alvise Rebuffi, Valeriu Lacatusu, Tuan Tran, Alexandre Mourachko,
- Abstract要約: SyncSealは、堅牢な画像同期のためのbespokeの透かし方式である。
イメージを不可避的に変更する埋め込みネットワークと、画像が被写体となる幾何学的変換を予測する抽出ネットワークに依存している。
- 参考スコア(独自算出の注目度): 42.902365202924535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synchronization is the task of estimating and inverting geometric transformations (e.g., crop, rotation) applied to an image. This work introduces SyncSeal, a bespoke watermarking method for robust image synchronization, which can be applied on top of existing watermarking methods to enhance their robustness against geometric transformations. It relies on an embedder network that imperceptibly alters images and an extractor network that predicts the geometric transformation to which the image was subjected. Both networks are end-to-end trained to minimize the error between the predicted and ground-truth parameters of the transformation, combined with a discriminator to maintain high perceptual quality. We experimentally validate our method on a wide variety of geometric and valuemetric transformations, demonstrating its effectiveness in accurately synchronizing images. We further show that our synchronization can effectively upgrade existing watermarking methods to withstand geometric transformations to which they were previously vulnerable.
- Abstract(参考訳): 同期化は、画像に適用された幾何変換(例えば、作物、回転)を推定および反転するタスクである。
この研究は、ロバストな画像同期のためのベスポークな透かし法SyncSealを導入し、既存の透かし法に応用して幾何学的変換に対するロバスト性を高める。
イメージを不可避的に変更する埋め込みネットワークと、画像が被写体となる幾何学的変換を予測する抽出ネットワークに依存している。
両ネットワークは、予測された変換パラメータと基底構造パラメータの誤差を最小限に抑えるために、エンドツーエンドでトレーニングされており、高い知覚品質を維持するための識別器と組み合わせられている。
本手法を様々な幾何および値の変換に対して実験的に検証し,正確な同期画像の有効性を実証した。
さらに,既存の透かし手法を効果的に改良し,それまで脆弱であった幾何変換に耐えられることを示す。
関連論文リスト
- Training-free Geometric Image Editing on Diffusion Models [53.38549950608886]
画像内の物体が再配置、再配向、あるいは再形成されるような幾何学的画像編集の課題に取り組む。
本稿では、オブジェクト変換、ソース領域のインペイント、ターゲット領域の洗練を分離する分離パイプラインを提案する。
塗装と精錬は、トレーニングフリーの拡散アプローチであるFreeFineを使って実装されている。
論文 参考訳(メタデータ) (2025-07-31T07:36:00Z) - Aligned Novel View Image and Geometry Synthesis via Cross-modal Attention Instillation [62.87088388345378]
ワーピング・アンド・インペインティング手法を用いて,新しいビューイメージと幾何学生成の整合性を実現する拡散型フレームワークを提案する。
手法は、既製の幾何学予測器を利用して、参照画像から見る部分的な幾何学を予測する。
生成した画像と幾何の正確なアライメントを確保するために, クロスモーダルアテンション蒸留法を提案する。
論文 参考訳(メタデータ) (2025-06-13T16:19:00Z) - Blind Deep-Learning-Based Image Watermarking Robust Against Geometric
Transformations [6.948186032020995]
提案手法は,透かし符号化と復号化にディープラーニングを用いた既存のHiDDeNアーキテクチャに基づいている。
私たちは、このアーキテクチャに新しいノイズ層、すなわち、微分可能なJPEG推定、回転、再スケーリング、翻訳、せん断、ミラーリングを追加します。
提案手法は,消費者の端末で見た画像の保護に利用することができる。
論文 参考訳(メタデータ) (2024-02-14T10:18:00Z) - Image Morphing with Perceptual Constraints and STN Alignment [70.38273150435928]
本稿では,一対の入力画像で動作する条件付きGANモーフィングフレームワークを提案する。
特別なトレーニングプロトコルは、知覚的類似性損失と組み合わせてフレームのシーケンスを生成し、時間とともにスムーズな変換を促進する。
我々は、古典的かつ潜時的な空間変形技術との比較を行い、自己スーパービジョンのための一連の画像から、我々のネットワークが視覚的に楽しむモーフィング効果を生成することを実証する。
論文 参考訳(メタデータ) (2020-04-29T10:49:10Z) - Fast Symmetric Diffeomorphic Image Registration with Convolutional
Neural Networks [11.4219428942199]
本稿では,新しい非教師付き対称画像登録手法を提案する。
大規模脳画像データセットを用いた3次元画像登録法について検討した。
論文 参考訳(メタデータ) (2020-03-20T22:07:24Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
我々は,入力画像の同一性を保った画像を生成するために,微細なカテゴリで画像を変換することを目的としている。
我々は、画像のアイデンティティと非関連要因をアンハングルするために、生成的敵ネットワークに基づくモデルを採用する。
CompCarsとMulti-PIEデータセットの実験では、我々のモデルが生成した画像のアイデンティティを、最先端の画像-画像変換モデルよりもはるかによく保存していることが示された。
論文 参考訳(メタデータ) (2020-01-12T05:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。