論文の概要: Synergizing Static Analysis with Large Language Models for Vulnerability Discovery and beyond
- arxiv url: http://arxiv.org/abs/2509.15433v1
- Date: Thu, 18 Sep 2025 21:15:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:10.904028
- Title: Synergizing Static Analysis with Large Language Models for Vulnerability Discovery and beyond
- Title(参考訳): 脆弱性発見のための大規模言語モデルによる静的解析の相乗効果
- Authors: Vaibhav Agrawal, Kiarash Ahi,
- Abstract要約: 本稿では,Large Language Models (LLMs) と Static Application Security Testing (SAST) の相乗効果を検討した。
LLMはコード解析やパターン認識に優れるが、矛盾や幻覚に陥りやすい。
SAST-GeniusはSem単独と比較して偽陽性を約91%(225~20)減らした。
- 参考スコア(独自算出の注目度): 1.259425825328488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report examines the synergy between Large Language Models (LLMs) and Static Application Security Testing (SAST) to improve vulnerability discovery. Traditional SAST tools, while effective for proactive security, are limited by high false-positive rates and a lack of contextual understanding. Conversely, LLMs excel at code analysis and pattern recognition but can be prone to inconsistencies and hallucinations. By integrating these two technologies, a more intelligent and efficient system is created. This combination moves beyond mere vulnerability detection optimization, transforming security into a deeply integrated, contextual process that provides tangible benefits like improved triage, dynamic bug descriptions, bug validation via exploit generation and enhanced analysis of complex codebases. The result is a more effective security approach that leverages the strengths of both technologies while mitigating their weaknesses. SAST-Genius reduced false positives by about 91 % (225 to 20) compared to Semgrep alone.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) と Static Application Security Testing (SAST) の相乗効果を検討した。
従来のSASTツールは、積極的なセキュリティに有効であるが、高い偽陽性率と文脈理解の欠如によって制限されている。
逆に、LLMはコード解析やパターン認識に優れていますが、矛盾や幻覚の傾向があります。
これら2つの技術を統合することで、よりインテリジェントで効率的なシステムが作成される。
この組み合わせは単なる脆弱性検出最適化を超えて、トリアージの改善、動的なバグ記述、エクスプロイト生成によるバグ検証、複雑なコードベースの分析強化といった具体的なメリットを提供する、深く統合されたコンテキストプロセスにセキュリティを変換する。
その結果、両方の技術の強みを生かし、弱点を緩和するより効果的なセキュリティアプローチが実現した。
SAST-GeniusはSemgrep単独と比較して偽陽性を約91%(225~20)減らした。
関連論文リスト
- White-Basilisk: A Hybrid Model for Code Vulnerability Detection [50.49233187721795]
我々は、優れた性能を示す脆弱性検出の新しいアプローチであるWhite-Basiliskを紹介する。
White-Basiliskは、パラメータ数2億の脆弱性検出タスクで結果を得る。
この研究は、コードセキュリティにおける新しいベンチマークを確立し、コンパクトで効率的に設計されたモデルが、特定のタスクにおいてより大きなベンチマークよりも優れているという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2025-07-11T12:39:25Z) - Decompiling Smart Contracts with a Large Language Model [51.49197239479266]
Etherscanの78,047,845のスマートコントラクトがデプロイされているにも関わらず(2025年5月26日現在)、わずか767,520 (1%)がオープンソースである。
この不透明さは、オンチェーンスマートコントラクトバイトコードの自動意味解析を必要とする。
バイトコードを可読でセマンティックに忠実なSolidityコードに変換する,先駆的な逆コンパイルパイプラインを導入する。
論文 参考訳(メタデータ) (2025-06-24T13:42:59Z) - EXPLICATE: Enhancing Phishing Detection through Explainable AI and LLM-Powered Interpretability [44.2907457629342]
EXPLICATEは、三成分アーキテクチャによるフィッシング検出を強化するフレームワークである。
既存のディープラーニング技術と同等ですが、説明性が向上しています。
自動AIとフィッシング検出システムにおけるユーザ信頼の重大な隔たりに対処する。
論文 参考訳(メタデータ) (2025-03-22T23:37:35Z) - Can LLM Prompting Serve as a Proxy for Static Analysis in Vulnerability Detection [9.269926508651091]
大規模言語モデル(LLM)は、脆弱性検出などの安全クリティカルなコードタスクに制限があることを示している。
本稿では,脆弱性の自然言語命令を,対照的な連鎖推論と統合する戦略を提案する。
本研究は,静的アナライザの厳格な手作りルールに代えて,セキュリティ対応のプロンプト技術が有効であることを示す。
論文 参考訳(メタデータ) (2024-12-16T18:08:14Z) - In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [104.94706600050557]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - Boosting Cybersecurity Vulnerability Scanning based on LLM-supported Static Application Security Testing [5.644999288757871]
大規模言語モデル(LLM)は、強力なコード解析機能を示しているが、静的トレーニングデータとプライバシリスクは、その有効性を制限している。
LSASTは,LSLMをSASTスキャナと統合し,脆弱性検出を強化する手法である。
静的な脆弱性分析のための新しいベンチマークを設定し、堅牢でプライバシを重視したソリューションを提供しました。
論文 参考訳(メタデータ) (2024-09-24T04:42:43Z) - PenHeal: A Two-Stage LLM Framework for Automated Pentesting and Optimal Remediation [18.432274815853116]
PenHealは2段階のLSMベースのフレームワークで、自律的に脆弱性を特定してセキュリティを確保する。
本稿では,LLMベースの2段階フレームワークであるPenHealについて紹介する。
論文 参考訳(メタデータ) (2024-07-25T05:42:14Z) - Comparison of Static Application Security Testing Tools and Large Language Models for Repo-level Vulnerability Detection [11.13802281700894]
静的アプリケーションセキュリティテスト(SAST)は通常、セキュリティ脆弱性のソースコードをスキャンするために使用される。
ディープラーニング(DL)ベースの手法は、ソフトウェア脆弱性検出の可能性を実証している。
本稿では,ソフトウェア脆弱性を検出するために,15種類のSASTツールと12種類の最先端のオープンソースLLMを比較した。
論文 参考訳(メタデータ) (2024-07-23T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。