論文の概要: Ultra-short-term solar power forecasting by deep learning and data reconstruction
- arxiv url: http://arxiv.org/abs/2509.17095v1
- Date: Sun, 21 Sep 2025 14:22:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.114109
- Title: Ultra-short-term solar power forecasting by deep learning and data reconstruction
- Title(参考訳): 深層学習とデータ再構成による超短期太陽エネルギー予測
- Authors: Jinbao Wang, Jun Liu, Shiliang Zhang, Xuehui Ma,
- Abstract要約: 深層学習に基づく超短周期太陽エネルギー予測とデータ再構成を提案する。
我々は、ターゲット予測期間に対する長期的および短期的依存関係をキャプチャするために、ディープラーニングモデルを用いる。
- 参考スコア(独自算出の注目度): 60.200987006598524
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The integration of solar power has been increasing as the green energy transition rolls out. The penetration of solar power challenges the grid stability and energy scheduling, due to its intermittent energy generation. Accurate and near real-time solar power prediction is of critical importance to tolerant and support the permeation of distributed and volatile solar power production in the energy system. In this paper, we propose a deep-learning based ultra-short-term solar power prediction with data reconstruction. We decompose the data for the prediction to facilitate extensive exploration of the spatial and temporal dependencies within the data. Particularly, we reconstruct the data into low- and high-frequency components, using ensemble empirical model decomposition with adaptive noise (CEEMDAN). We integrate meteorological data with those two components, and employ deep-learning models to capture long- and short-term dependencies towards the target prediction period. In this way, we excessively exploit the features in historical data in predicting a ultra-short-term solar power production. Furthermore, as ultra-short-term prediction is vulnerable to local optima, we modify the optimization in our deep-learning training by penalizing long prediction intervals. Numerical experiments with diverse settings demonstrate that, compared to baseline models, the proposed method achieves improved generalization in data reconstruction and higher prediction accuracy for ultra-short-term solar power production.
- Abstract(参考訳): グリーンエネルギーの移行が進むにつれて、太陽エネルギーの統合が増加している。
太陽エネルギーの浸透は、断続的なエネルギー発生のためにグリッド安定性とエネルギースケジューリングに挑戦する。
正確な、そしてほぼリアルタイムな太陽発電予測は、エネルギーシステムにおける分散および揮発性太陽発電の浸透を許容し、支援するために重要である。
本稿では,データ再構成を用いたディープラーニングに基づく超短期太陽発電予測を提案する。
本研究では,データ内の空間的および時間的依存関係の広範な探索を容易にするために,予測のためのデータを分解する。
特に,適応雑音を用いたアンサンブル実験モデル分解(CEEMDAN)を用いて,低周波成分と高周波成分のデータを再構成する。
気象データをこれらの2つの成分と統合し、ディープラーニングモデルを用いて、目標予測期間に対する長期的および短期的依存関係をキャプチャする。
このようにして、超短寿命の太陽光発電の予測において、歴史的データの特徴を過度に活用する。
さらに,超短命予測は局所最適に弱いため,長い予測間隔をペナルティ化することにより,ディープラーニングトレーニングにおける最適化を改良する。
多様な設定による数値実験により,提案手法はベースラインモデルと比較して,データ再構成の一般化と超短寿命太陽光発電の予測精度の向上を実現している。
関連論文リスト
- Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
風力発電は、再生可能、汚染のないその他の利点により、世界中の注目を集めている。
正確な風力発電予測(WPF)は、電力系統の運用における電力変動を効果的に低減することができる。
既存の手法は主に短期的な予測のために設計されており、効果的な時空間的特徴増強が欠如している。
論文 参考訳(メタデータ) (2023-05-30T04:03:15Z) - Feature Construction and Selection for PV Solar Power Modeling [1.8960797847221296]
太陽光発電(PV)発電を予測するモデルを構築することで、意思決定者はエネルギー不足を補うことができる。
太陽エネルギーの出力は、光や天気など多くの要因に依存する時系列データである。
本研究では, 過去のデータをもとに, 1時間先進太陽エネルギー予測のための機械学習フレームワークを開発した。
論文 参考訳(メタデータ) (2022-02-13T06:49:28Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
我々は、自己教師付き学習を用いた多スペクトル衛星データから、太陽流の一般的なモデルを構築した。
我々のモデルは、衛星観測に基づいて、位置の将来の太陽放射を推定する。
提案手法は,25の太陽観測地点にまたがる異なる範囲で評価し,地平線を予測できる。
論文 参考訳(メタデータ) (2021-12-28T03:13:44Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
機械学習技術の強みを利用した日次太陽エネルギー予測について報告する。
線形, 尾根, ラッソ, 決定木, ランダム森林, 人工ニューラルネットワークなどのベースライン回帰器の予測モデルを実装した。
改良された精度は,2つのグリッドサイズでランダム森林と尾根回帰器によって達成されている。
論文 参考訳(メタデータ) (2020-10-25T17:56:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。