論文の概要: A Deep Learning Approach for Spatio-Temporal Forecasting of InSAR Ground Deformation in Eastern Ireland
- arxiv url: http://arxiv.org/abs/2509.18176v1
- Date: Wed, 17 Sep 2025 17:10:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.457567
- Title: A Deep Learning Approach for Spatio-Temporal Forecasting of InSAR Ground Deformation in Eastern Ireland
- Title(参考訳): アイルランド東部におけるInSAR地盤変形の時空間予測のための深層学習手法
- Authors: Wendong Yao, Saeed Azadnejad, Binhua Huang, Shane Donohue, Soumyabrata Dev,
- Abstract要約: 地盤変位のモニタリングは、都市インフラと地質学的危険の軽減に不可欠である。
本稿では,スパース点計測を高密度時間テンソルに変換する新しいディープラーニングフレームワークを提案する。
その結果,提案アーキテクチャはより正確で空間的に整合性のある予測を提供することを示した。
- 参考スコア(独自算出の注目度): 2.840858735842673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring ground displacement is crucial for urban infrastructure stability and mitigating geological hazards. However, forecasting future deformation from sparse Interferometric Synthetic Aperture Radar (InSAR) time-series data remains a significant challenge. This paper introduces a novel deep learning framework that transforms these sparse point measurements into a dense spatio-temporal tensor. This methodological shift allows, for the first time, the direct application of advanced computer vision architectures to this forecasting problem. We design and implement a hybrid Convolutional Neural Network and Long-Short Term Memory (CNN-LSTM) model, specifically engineered to simultaneously learn spatial patterns and temporal dependencies from the generated data tensor. The model's performance is benchmarked against powerful machine learning baselines, Light Gradient Boosting Machine and LASSO regression, using Sentinel-1 data from eastern Ireland. Results demonstrate that the proposed architecture provides significantly more accurate and spatially coherent forecasts, establishing a new performance benchmark for this task. Furthermore, an interpretability analysis reveals that baseline models often default to simplistic persistence patterns, highlighting the necessity of our integrated spatio-temporal approach to capture the complex dynamics of ground deformation. Our findings confirm the efficacy and potential of spatio-temporal deep learning for high-resolution deformation forecasting.
- Abstract(参考訳): 地盤変位のモニタリングは、都市インフラの安定性と地質学的危険の軽減に不可欠である。
しかし、スパース干渉合成開口レーダ(InSAR)の時系列データから将来の変形を予測することは大きな課題である。
本稿では,これらの疎点測定を高密度時空間テンソルに変換する新しいディープラーニングフレームワークを提案する。
この方法論的なシフトにより、この予測問題に先進的なコンピュータビジョンアーキテクチャを直接適用できるようになった。
我々は,生成したデータテンソルから空間パターンと時間依存性を同時に学習するために,ハイブリッド畳み込みニューラルネットワークと長短項メモリ(CNN-LSTM)モデルの設計と実装を行う。
モデルのパフォーマンスは、東アイルランドのSentinel-1データを使用して、強力な機械学習ベースライン、Light Gradient Boosting Machine、LASSOレグレッションに対してベンチマークされる。
その結果,提案アーキテクチャはより正確で空間的に整合性のある予測を提供し,新しい性能ベンチマークを確立できた。
さらに、解釈可能性解析により、ベースラインモデルはしばしば単純持続パターンにデフォルトとなることが示され、地上変形の複雑な力学を捉えるために、我々の統合時空間的アプローチの必要性が浮き彫りにされている。
高分解能変形予測における時空間深層学習の有効性と可能性を確認した。
関連論文リスト
- Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [42.60778405812048]
我々はFNFをバックボーンとして、DBDをアーキテクチャとして導入し、空間時間モデルのための優れた学習能力と最適な学習経路を提供する。
FNFは、局所時間領域とグローバル周波数領域の情報処理を単一のバックボーン内で統合し、空間的モデリングに自然に拡張することを示す。
論文 参考訳(メタデータ) (2025-06-10T18:40:20Z) - STRAP: Spatio-Temporal Pattern Retrieval for Out-of-Distribution Generalization [34.53308463024231]
本稿では,時空間探索型パターン学習フレームワークSTRAPを提案する。
推論中、STRAPは現在の入力と類似性に基づいてライブラリから関連するパターンを検索し、プラグイン・アンド・プレイ・プロンプト機構を介してモデルに注入する。
複数の実世界のストリーミンググラフデータセットに対する実験によると、STRAPはSTOODタスクの最先端STGNNベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2025-05-26T06:11:05Z) - Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting [0.8568432695376288]
本稿では、複雑な時間的データを予測するための高度なフェデレートラーニング(FL)フレームワークを提案し、最近の最先端モデルを改善した。
結果として生じるアーキテクチャは、様々な予測アプリケーションで複雑な時間パターンを扱う能力を大幅に改善します。
提案手法の有効性は,都市部におけるマルチモーダル交通需要予測のためのパブリックデータセットや,Origin-Destination (OD) 行列予測のためのプライベートデータセットなど,実世界の応用に関する広範な実験を通じて実証される。
論文 参考訳(メタデータ) (2025-03-06T15:16:57Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Spatio-Temporal Functional Neural Networks [11.73856529960872]
本稿では,多くの研究者によって有効性が証明された時間回帰モデルであるニューラル・ファンクショナル・ネットワーク(FNN)の2つの新しい拡張を提案する。
提案したモデルは気象分野における実用的で挑戦的な降水予測問題を解決するために展開される。
論文 参考訳(メタデータ) (2020-09-11T21:32:35Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。