論文の概要: Assistive Decision-Making for Right of Way Navigation at Uncontrolled Intersections
- arxiv url: http://arxiv.org/abs/2509.18407v1
- Date: Mon, 22 Sep 2025 20:46:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.579208
- Title: Assistive Decision-Making for Right of Way Navigation at Uncontrolled Intersections
- Title(参考訳): 制御不能区間における経路ナビゲーションに対する補助的意思決定
- Authors: Navya Tiwari, Joseph Vazhaeparampil, Victoria Preston,
- Abstract要約: 無制御の交差点は、不明瞭な道路のルールのために、かなりの数の道路事故の原因となっている。
本稿では,部分観測可能なマルコフ決定プロセスとして定式化された,制御不能な交差点における右道推論のためのドライバ・アシスト・フレームワークを提案する。
確率プランナーはルールベースのベースラインよりも優れており、部分観測可能条件下では最大97.5%の衝突のないナビゲーションを実現している。
- 参考スコア(独自算出の注目度): 0.17205106391379021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncontrolled intersections account for a significant fraction of roadway crashes due to ambiguous right-of-way rules, occlusions, and unpredictable driver behavior. While autonomous vehicle research has explored uncertainty-aware decision making, few systems exist to retrofit human-operated vehicles with assistive navigation support. We present a driver-assist framework for right-of-way reasoning at uncontrolled intersections, formulated as a Partially Observable Markov Decision Process (POMDP). Using a custom simulation testbed with stochastic traffic agents, pedestrians, occlusions, and adversarial scenarios, we evaluate four decision-making approaches: a deterministic finite state machine (FSM), and three probabilistic planners: QMDP, POMCP, and DESPOT. Results show that probabilistic planners outperform the rule-based baseline, achieving up to 97.5 percent collision-free navigation under partial observability, with POMCP prioritizing safety and DESPOT balancing efficiency and runtime feasibility. Our findings highlight the importance of uncertainty-aware planning for driver assistance and motivate future integration of sensor fusion and environment perception modules for real-time deployment in realistic traffic environments.
- Abstract(参考訳): 制御不能な交差点は、不明瞭な道路のルール、閉塞、予測不可能な運転行動により、かなりの数の道路事故の原因となっている。
自律走行車の研究は不確実性を認識した意思決定を探求してきたが、補助航法支援を備えた人間運転車に適合するシステムはほとんどない。
本稿では,部分観測可能なマルコフ決定過程 (POMDP) として定式化された,制御不能な交差点における右道推論のためのドライバ・アシスト・フレームワークを提案する。
確率的交通エージェント,歩行者,オクルージョン,敵対的シナリオを用いたカスタムシミュレーションを用いて,決定論的有限状態マシン(FSM)と3つの確率的プランナ(QMDP,POMCP,DESPOT)の4つの意思決定手法を評価する。
その結果、確率的プランナーはルールベースのベースラインを上回り、部分観測可能性下では最大97.5パーセントの衝突のないナビゲーションを実現し、安全とDESPOTのバランスの取れやすさと実行可能性の優先順位付けを行った。
本研究は、ドライバー支援のための不確実性を考慮した計画の重要性を強調し、現実的な交通環境におけるリアルタイム展開のためのセンサフュージョンと環境認識モジュールの統合を動機づけるものである。
関連論文リスト
- Minds on the Move: Decoding Trajectory Prediction in Autonomous Driving with Cognitive Insights [18.92479778025183]
運転シナリオでは、車両の軌道は人間の運転者の意思決定プロセスによって決定される。
従来のモデルは人間のドライバーの真の意図を捉えることができず、長期の軌道予測において最適以下の性能をもたらす。
ドライバーの意思決定メカニズムを解釈するために,認知的概念である知覚安全を取り入れた認知情報変換器(CITF)を導入する。
論文 参考訳(メタデータ) (2025-02-27T13:43:17Z) - Autonomous Vehicle Decision-Making Framework for Considering Malicious
Behavior at Unsignalized Intersections [7.245712580297489]
自動運転車では、報酬信号は安全や効率などのフィードバック要因に関する通常の報酬として設定される。
本稿では,緊急時の安全性を高めるために,可変重み付けパラメータによって安全ゲインを変調する。
この決定フレームワークは、無人の交差点で潜在的に悪意のある振る舞いをする車両に遭遇する際に、自律走行車両が情報的決定を行うことを可能にする。
論文 参考訳(メタデータ) (2024-09-11T03:57:44Z) - DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
本稿では,DriveCoTというエンド・ツー・エンドの運転データセットを総合的に収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
論文 参考訳(メタデータ) (2024-03-25T17:59:01Z) - Autonomous Driving With Perception Uncertainties: Deep-Ensemble Based Adaptive Cruise Control [6.492311803411367]
ブラックボックスDeep Neural Networks (DNN) を用いた高度な認識システムは、人間のような理解を実証する。
予測不可能な振る舞いと解釈可能性の欠如は、安全クリティカルなシナリオへの展開を妨げる可能性がある。
論文 参考訳(メタデータ) (2024-03-22T19:04:58Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Interaction-Aware Decision-Making for Autonomous Vehicles in Forced
Merging Scenario Leveraging Social Psychology Factors [7.812717451846781]
インタラクションドライバの社会的行動と個人的目的の両方を取り入れた行動モデルを考える。
我々は、他のドライバーの意図をオンラインで見積もる、後退する水平制御に基づく意思決定戦略を開発する。
論文 参考訳(メタデータ) (2023-09-25T19:49:14Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
本稿では,他のドライバの動作から不確実性が生ずる移動トラフィックにマージする複雑なタスクに焦点を当てる。
我々はこの問題を部分的に観測可能なマルコフ決定プロセス(POMDP)とみなし、モンテカルロ木探索でオンラインに解決する。
POMDPの解決策は、接近する車に道を譲る、前方の車から安全な距離を維持する、あるいは交通に合流するといった、高いレベルの運転操作を行う政策である。
論文 参考訳(メタデータ) (2023-03-29T16:12:45Z) - Reinforcement Learning with a Terminator [80.34572413850186]
我々は, TerMDP のパラメータを学習し, 推定問題の構造を活用し, 状態ワイドな信頼境界を提供する。
我々はこれらを用いて証明可能な効率のよいアルゴリズムを構築し、終端を考慮し、その後悔を抑える。
論文 参考訳(メタデータ) (2022-05-30T18:40:28Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
トレーニング外の配布(OOD)シナリオは、デプロイ時にエージェントを学ぶ上で一般的な課題である。
インプロバスト模倣計画(RIP)と呼ばれる不確実性を考慮した計画手法を提案する。
提案手法は,OODシーンにおける過信および破滅的な外挿を低減し,分布変化を検知し,回復することができる。
分散シフトを伴うタスク群に対する駆動エージェントのロバスト性を評価するために,自動走行車ノベルシーンベンチマークであるtexttCARNOVEL を導入する。
論文 参考訳(メタデータ) (2020-06-26T11:07:32Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。