論文の概要: Experience Scaling: Post-Deployment Evolution For Large Language Models
- arxiv url: http://arxiv.org/abs/2509.18771v1
- Date: Tue, 23 Sep 2025 08:04:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.765805
- Title: Experience Scaling: Post-Deployment Evolution For Large Language Models
- Title(参考訳): エクスペリエンスのスケーリング - 大規模言語モデルのデプロイ後の進化
- Authors: Xingkun Yin, Kaibin Huang, Dong In Kim, Hongyang Du,
- Abstract要約: 大規模言語モデル(LLM)の継続的デプロイ後進化のためのフレームワークであるエクスペリエンススケーリングを提案する。
このフレームワークは,以前には見つからなかったが関連するタスク,繰り返しクエリ,過飽和知識ストアへの一般化を含む実世界のシナリオで検証される。
その結果、構造化されたデプロイ後学習は、静的な人間生成データの限界を超えてLLM能力を拡張できることを示した。
- 参考スコア(独自算出の注目度): 44.48142891798125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling model size, training data, and compute power have driven advances in large language models (LLMs), but these approaches are reaching saturation as human-generated text is exhausted and further gains diminish. We propose experience scaling, a framework for continuous post-deployment evolution for LLMs through autonomous interaction with the environment and collaborative sharing of accumulated experience. The framework captures raw interactions, distills them into compact, reusable knowledge, and periodically refines stored content to preserve relevance and efficiency. We validate the framework in simulated real-world scenarios involving generalization to previously unseen but related tasks, repetitive queries, and over-saturated knowledge stores. Across all settings, experience scaling improves accuracy, sustains performance over time, and maintains gains when applied to novel situations. These results demonstrate that structured post-deployment learning can extend LLM capabilities beyond the limits of static human-generated data, offering a scalable path for continued intelligence progress.
- Abstract(参考訳): モデルサイズ、トレーニングデータ、計算能力のスケーリングは、大規模言語モデル(LLM)の進歩を促しているが、これらのアプローチは、人間の生成したテキストが枯渇し、さらに進歩するにつれて、飽和状態に達している。
本稿では,環境との自律的インタラクションと蓄積した経験の共有を通じて,LCMの継続的デプロイ後進化のためのフレームワークであるエクスペリエンススケーリングを提案する。
このフレームワークは生の相互作用を捉え、それらをコンパクトで再利用可能な知識に蒸留し、保存されたコンテンツを定期的に洗練し、関連性と効率性を維持する。
このフレームワークは,以前には見つからなかったが関連するタスク,繰り返しクエリ,過飽和知識ストアへの一般化を含む実世界のシナリオで検証される。
あらゆる設定において、経験的スケーリングは正確性を改善し、時間とともにパフォーマンスを維持し、新しい状況に適用した場合の利益を維持する。
これらの結果は、構造化されたデプロイ後学習が、静的な人為的データの限界を超えてLLM能力を拡張できることを示し、継続的なインテリジェンス進歩のためのスケーラブルなパスを提供する。
関連論文リスト
- TRAIL: Joint Inference and Refinement of Knowledge Graphs with Large Language Models [5.678291291711662]
TRAILは思考、推論、インクリメンタルラーニングのための、新しく統合されたフレームワークである。
共同推論と動的KG精製を大きな言語モデルと組み合わせる。
複数のベンチマークでの大規模な実験により、TRAILは既存のKG拡張および検索拡張LDMベースラインを3%から13%上回った。
論文 参考訳(メタデータ) (2025-08-06T14:25:05Z) - Mind the Gap: Preserving and Compensating for the Modality Gap in CLIP-Based Continual Learning [11.50324946279326]
コントラスト言語-画像事前訓練モデル(CLIP)は、様々な下流タスクに強い能力を示す。
視覚言語事前学習モデルの微調整におけるモダリティギャップの変化を分析する。
クラス増分学習におけるCLIPの性能を向上する単純なMG-CLIPを提案する。
論文 参考訳(メタデータ) (2025-07-12T02:28:42Z) - Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search [48.348209577994865]
大規模言語モデル(LLM)はますます有能になるが、複雑で対話的な環境で効果的に機能するためには、重要なガイダンスや広範な相互作用履歴を必要とすることが多い。
テキスト内学習による計画能力を高める新しいLLMエージェントフレームワークを提案する。
我々のエージェントは、その相互作用軌跡からタスククリティカルな原子事実'を抽出することを学ぶ。
論文 参考訳(メタデータ) (2025-06-10T18:36:31Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
自律型大規模言語モデル(LLM)エージェントを体系的に強化し、評価し、改善するためのガイムスタイルのフレームワーク。
MLE-Dojoは、現実的なエンジニアリングシナリオを反映した、多様でオープンなMLEタスクを慎重にキュレートする。
完全に実行可能な環境は、教師付き微調整と強化学習の両方を通して包括的なエージェントトレーニングをサポートする。
論文 参考訳(メタデータ) (2025-05-12T17:35:43Z) - Counterfactual experience augmented off-policy reinforcement learning [9.77739016575541]
CEAは効率的な推論モデルを構築し、学習データの表現性を向上する。
変分オートエンコーダを使用して状態遷移の動的パターンをモデル化する。
学習データのアウト・オブ・ディストリビューション問題を緩和するために、完全な反ファクト体験を構築する。
論文 参考訳(メタデータ) (2025-03-18T02:32:50Z) - Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
本稿では,出力確率と事前学習データ頻度の相関を計測する,記憶化,分布記憶化という拡張概念を導入する。
本研究は, より単純で知識集約的なタスクにおいて, 記憶がより大きな役割を担い, 一般化が, より困難で推論に基づくタスクの鍵であることを示す。
論文 参考訳(メタデータ) (2024-07-20T21:24:40Z) - CTP: Towards Vision-Language Continual Pretraining via Compatible
Momentum Contrast and Topology Preservation [128.00940554196976]
Vision-Language Continual Pretraining (VLCP)は、大規模なデータセット上でオフラインでトレーニングすることで、さまざまな下流タスクに対して印象的な結果を示している。
VLCP(Vision-Language Continual Pretraining)の研究を支援するために,我々はまず,包括的で統一されたベンチマークデータセットP9Dをコントリビュートする。
独立したタスクとしての各業界からのデータは、継続的な学習をサポートし、Webデータの事前学習をシミュレートする現実世界のロングテールな性質に準拠している。
論文 参考訳(メタデータ) (2023-08-14T13:53:18Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。