論文の概要: Remaining Time Prediction in Outbound Warehouse Processes: A Case Study (Short Paper)
- arxiv url: http://arxiv.org/abs/2509.18986v1
- Date: Tue, 23 Sep 2025 13:37:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-24 20:41:27.86033
- Title: Remaining Time Prediction in Outbound Warehouse Processes: A Case Study (Short Paper)
- Title(参考訳): アウトバウンド倉庫プロセスにおける継続時間予測--事例研究(短報)
- Authors: Erik Penther, Michael Grohs, Jana-Rebecca Rehse,
- Abstract要約: 航空事業におけるロジスティクス企業の現実のアウトバウンド倉庫プロセスにおける残余時間予測手法を4つ比較した。
ディープラーニングモデルは高い精度を達成するが、従来の強化手法のような浅い手法は競争精度を達成し、計算資源を著しく少なくする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive process monitoring is a sub-domain of process mining which aims to forecast the future of ongoing process executions. One common prediction target is the remaining time, meaning the time that will elapse until a process execution is completed. In this paper, we compare four different remaining time prediction approaches in a real-life outbound warehouse process of a logistics company in the aviation business. For this process, the company provided us with a novel and original event log with 169,523 traces, which we can make publicly available. Unsurprisingly, we find that deep learning models achieve the highest accuracy, but shallow methods like conventional boosting techniques achieve competitive accuracy and require significantly fewer computational resources.
- Abstract(参考訳): 予測プロセスモニタリングはプロセスマイニングのサブドメインであり、進行中のプロセス実行の将来を予測することを目的としている。
一般的な予測対象の1つは残り時間であり、つまりプロセスの実行が完了するまで経過する時間である。
本稿では,航空事業における物流企業の現実のアウトバウンド倉庫における4つの残余時間予測手法を比較した。
このプロセスのために同社は,169,523のトレースを備えた,新規でオリジナルなイベントログを提供してくれました。
当然のことながら、ディープラーニングモデルは高い精度を達成するが、従来の強化手法のような浅い手法は競争精度を達成し、計算資源を著しく少なくする。
関連論文リスト
- Predicting Case Suffixes With Activity Start and End Times: A Sweep-Line Based Approach [0.35684665108045377]
本稿では,開始と終了のタイムスタンプによるアクティビティからなるケースサフィックスの予測手法を提案する。
提案手法は,各アクティビティの待ち時間と処理時間の両方を予測する。
実生活および合成データセットの評価は、このアプローチの異なるインスタンス化の精度を比較する。
論文 参考訳(メタデータ) (2025-09-18T02:01:30Z) - Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
本稿では、デバイアスフェーズを予測ビジネスプロセス分析に組み込むことの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
論文 参考訳(メタデータ) (2024-10-03T15:56:03Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
本稿では,長期時系列予測のための制約付き学習手法を提案する。
提案手法は, 予測ウィンドウ上でエラーを発生させながら, 時系列ベンチマークにおける競合平均性能を示すことを示すための, 実用的なプリマル・デュアルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:20:44Z) - Enhancing the Accuracy of Predictors of Activity Sequences of Business
Processes [0.9668407688201361]
ケースサフィックスの予測は、リソーススケジュールの異なる短期的なワークロードと実行時間を見積もる入力を提供する。
この問題に対処する既存の方法は、いくつかのアクティビティが何度も繰り返される接尾辞を生成することが多いが、このパターンはデータでは観測されない。
本稿では,予測された症例接尾辞における活動の繰り返しを軽減するためのサンプリング手法を提案する。
論文 参考訳(メタデータ) (2023-12-09T12:16:58Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
SMURF-THPは,変圧器ホークス過程を学習し,予測の不確かさを定量化するスコアベース手法である。
具体的には、SMURF-THPは、スコアマッチング目標に基づいて、イベントの到着時刻のスコア関数を学習する。
我々は,イベントタイプ予測と到着時刻の不確実性定量化の両方において,広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-25T03:33:45Z) - Performance-Preserving Event Log Sampling for Predictive Monitoring [0.3425341633647624]
本稿では,予測モデルのためのトレーニングプロセスインスタンスのサンプリングを可能にするインスタンス選択手法を提案する。
インスタンスの選択手順により、次のアクティビティのトレーニング速度が大幅に向上し、残り時間の予測が可能であることを示す。
論文 参考訳(メタデータ) (2023-01-18T16:07:56Z) - Approaching sales forecasting using recurrent neural networks and
transformers [57.43518732385863]
深層学習技術を用いて,日・店・店レベルでの顧客販売予測問題に対処する3つの方法を開発した。
実験結果から,データ前処理を最小限に抑えた単純なシーケンスアーキテクチャを用いて,優れた性能を実現することができることを示す。
提案した解は約0.54の RMSLE を達成し、Kaggle コンペティションで提案された問題に対する他のより具体的な解と競合する。
論文 参考訳(メタデータ) (2022-04-16T12:03:52Z) - Event Log Sampling for Predictive Monitoring [0.3425341633647624]
本稿では,予測モデルのためのトレーニングプロセスインスタンスのサンプリングを可能にするインスタンス選択手法を提案する。
本手法は,次の活動予測法において,信頼性の高い予測精度を維持しつつ,トレーニング速度を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-04T13:36:48Z) - ProcessTransformer: Predictive Business Process Monitoring with
Transformer Network [0.06445605125467573]
本稿では,イベントログから高レベル表現を注目ネットワークで学習するプロセストランスフォーマーを提案する。
本モデルでは,複数イベントシーケンスと対応する出力の依存関係を確立するための自己保持機構を,長期記憶に取り入れた。
論文 参考訳(メタデータ) (2021-04-01T18:58:46Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
プロセスマイニングにおける中核的なタスクは、イベントログデータから正確なプロセスモデルを学ぶことを目的としたプロセス発見である。
本稿では,ターゲットプロセスモデルとして(ブロック-)構造化プログラムを直接使用することを提案する。
我々は,このような構造化プログラムプロセスモデルの発見に対して,新たなボトムアップ・アグリメティブ・アプローチを開発する。
論文 参考訳(メタデータ) (2020-08-13T10:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。