論文の概要: Generalized Nonnegative Structured Kruskal Tensor Regression
- arxiv url: http://arxiv.org/abs/2509.19900v1
- Date: Wed, 24 Sep 2025 08:51:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-25 20:53:19.748305
- Title: Generalized Nonnegative Structured Kruskal Tensor Regression
- Title(参考訳): 一般化された非負構造Kruskal Tensor Regression
- Authors: Xinjue Wang, Esa Ollila, Sergiy A. Vorobyov, Ammar Mian,
- Abstract要約: 一般化非負構造クルスカル回帰(NS-KTR)は、新しいテンソル回帰フレームワークである。
モード固有のハイブリッド正規化と非負性制約による解釈性と性能を向上させる。
- 参考スコア(独自算出の注目度): 22.300007523556022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Generalized Nonnegative Structured Kruskal Tensor Regression (NS-KTR), a novel tensor regression framework that enhances interpretability and performance through mode-specific hybrid regularization and nonnegativity constraints. Our approach accommodates both linear and logistic regression formulations for diverse response variables while addressing the structural heterogeneity inherent in multidimensional tensor data. We integrate fused LASSO, total variation, and ridge regularizers, each tailored to specific tensor modes, and develop an efficient alternating direction method of multipliers (ADMM) based algorithm for parameter estimation. Comprehensive experiments on synthetic signals and real hyperspectral datasets demonstrate that NS-KTR consistently outperforms conventional tensor regression methods. The framework's ability to preserve distinct structural characteristics across tensor dimensions while ensuring physical interpretability makes it especially suitable for applications in signal processing and hyperspectral image analysis.
- Abstract(参考訳): 本稿では,モード特異的なハイブリッド正規化と非負性制約による解釈性と性能を向上させる新しいテンソル回帰フレームワークNS-KTRを提案する。
本手法は,多次元テンソルデータに固有の構造的不均一性に対処しながら,多様な応答変数に対する線形回帰とロジスティック回帰の定式化に適合する。
本研究では, 混合LASSO, 総変分, リッジ正規化器をそれぞれ特定のテンソルモードに合わせて組み合わせ, パラメータ推定のための乗算器 (ADMM) に基づく効率的な交互方向法を開発した。
合成信号と実超スペクトルデータセットに関する包括的な実験は、NS-KTRが従来のテンソル回帰法より一貫して優れていることを示した。
このフレームワークは、物理的解釈可能性を確保しつつ、テンソル次元の異なる構造特性を維持できるので、特に信号処理やハイパースペクトル画像解析への応用に適している。
関連論文リスト
- Semi-parametric Functional Classification via Path Signatures Logistic Regression [1.210026603224224]
本稿では,ベクトル値関数データを分類するための半パラメトリックフレームワークであるPath Signatures Logistic Regressionを提案する。
この結果は, 粗い経路理論を現代的な関数型データ解析に組み込むことの実用的, 理論的利点を浮き彫りにしたものである。
論文 参考訳(メタデータ) (2025-07-09T08:06:50Z) - Low-Rank Implicit Neural Representation via Schatten-p Quasi-Norm and Jacobian Regularization [49.158601255093416]
暗黙的神経表現のためのニューラルネットワークによりパラメータ化されたCPベースの低ランクテンソル関数を提案する。
滑らか性のために、ヤコビアンとハッチンソンのトレース推定器のスペクトルノルムに基づく正規化項を提案する。
提案した滑らか度正規化はSVDフリーであり、明示的な連鎖規則の導出を避ける。
論文 参考訳(メタデータ) (2025-06-27T11:23:10Z) - Identifiable Convex-Concave Regression via Sub-gradient Regularised Least Squares [1.9580473532948397]
複雑な入力関係を凸成分と凹成分の和としてモデル化する新しい非パラメトリック回帰法を提案する。
The method-ICCNLS-decomposes sub-constrained shape-constrained additive decomposition。
論文 参考訳(メタデータ) (2025-06-22T15:53:12Z) - A Simplified Analysis of SGD for Linear Regression with Weight Averaging [64.2393952273612]
最近の研究は、定常学習率を用いた線形回帰におけるSGD最適化のためのシャープレートを提供する。
簡単な線形代数ツールを用いて,2021ベニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグナグニグニグニグニグニグニグニグニグニグニグネグニグニグニグニグネグニグニグネグニ
我々の研究は線形回帰の勾配勾配を非常に容易に解析し、ミニバッチと学習率のスケジューリングのさらなる分析に役立てることができると信じている。
論文 参考訳(メタデータ) (2025-06-18T15:10:38Z) - Asymptotics of Linear Regression with Linearly Dependent Data [28.005935031887038]
非ガウス共変量の設定における線形回帰の計算について検討する。
本稿では,依存性が推定誤差と正規化パラメータの選択にどのように影響するかを示す。
論文 参考訳(メタデータ) (2024-12-04T20:31:47Z) - An In-depth Investigation of Sparse Rate Reduction in Transformer-like Models [32.04194224236952]
スパースレートリダクション(SRR)と呼ばれる情報理論目的関数を提案する。
SRRは正の相関係数を持ち、パスノルムやシャープネスベースなど他の基準値よりも優れていることを示す。
ベンチマーク画像分類データセットの正規化として,SRRを用いて一般化を改善することができることを示す。
論文 参考訳(メタデータ) (2024-11-26T07:44:57Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
リッジ回帰に関する最近の結果について統一的な視点を提示する。
我々は、物理とディープラーニングの背景を持つ読者を対象に、ランダム行列理論と自由確率の基本的なツールを使用する。
我々の結果は拡張され、初期のスケーリング法則のモデルについて統一的な視点を提供する。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Tensor-on-Tensor Regression: Riemannian Optimization,
Over-parameterization, Statistical-computational Gap, and Their Interplay [9.427635404752936]
テンソル・オン・テンソル回帰(tensor-on-tensor regression)について検討し、テンソル応答とテンソル共変量とをタッカー階数パラメータ/行列で結合する。
我々は、未知の階級の課題に対処する2つの方法を提案する。
一般テンソル・オン・テンソル回帰に対する最初の収束保証を提供する。
論文 参考訳(メタデータ) (2022-06-17T13:15:27Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。