論文の概要: Downscaling climate projections to 1 km with single-image super resolution
- arxiv url: http://arxiv.org/abs/2509.21399v1
- Date: Wed, 24 Sep 2025 12:19:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:53.906157
- Title: Downscaling climate projections to 1 km with single-image super resolution
- Title(参考訳): 単一画像超解像による1kmの降雨量予測
- Authors: Petr Košťál, Pavel Kordík, Ondřej Podsztavek,
- Abstract要約: 単一画像の超解像モデルでは、統計的に気候予測を1kmまで下げることができる。
我々は、高分解能観測格子データセット上でモデルを訓練し、それらを低分解能気候予測に適用する。
- 参考スコア(独自算出の注目度): 1.6695325461264092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-resolution climate projections are essential for local decision-making. However, available climate projections have low spatial resolution (e.g. 12.5 km), which limits their usability. We address this limitation by leveraging single-image super-resolution models to statistically downscale climate projections to 1-km resolution. Since high-resolution climate projections are unavailable for training, we train models on a high-resolution observational gridded data set and apply them to low-resolution climate projections. We propose a climate indicator-based assessment using observed climate indices computed at weather station locations to evaluate the downscaled climate projections without ground-truth high-resolution climate projections. Experiments on daily mean temperature demonstrate that single-image super-resolution models can downscale climate projections without increasing the error of climate indicators compared to low-resolution climate projections.
- Abstract(参考訳): 局地的な意思決定には高解像度の気候予測が不可欠である。
しかし、利用可能な気候予測は空間分解能が低く(例えば12.5 km)、使用性に制限がある。
単一画像の超解像モデルを用いて、統計的に下降する気候予測を1kmの解像にすることで、この制限に対処する。
高分解能気候予測は訓練には利用できないため、高分解能観測格子データセット上でモデルを訓練し、低分解能気候予測に適用する。
気象観測所で計算された観測された気候指標を用いた気候指標に基づく気候評価を行い,地上の高分解能気候予測を使わずに下降した気候予測を評価する。
日平均気温に関する実験は、単一画像の超解像モデルが、低解像度の気候予測と比較して気候指標の誤差を増大させることなく、気候予測をダウンスケールできることを示した。
関連論文リスト
- ClimateBench-M: A Multi-Modal Climate Data Benchmark with a Simple Generative Method [61.76389719956301]
我々は、ERA5の時系列気候データ、NOAAの極度の気象イベントデータ、NASAの衛星画像データを調整するマルチモーダル気候ベンチマークであるClimateBench-Mに貢献する。
また,各データモダリティの下では,天気予報,雷雨警報,作物の分断作業において,競争性能を向上できる簡易かつ強力な生成手法を提案する。
論文 参考訳(メタデータ) (2025-04-10T02:22:23Z) - PACER: Physics Informed Uncertainty Aware Climate Emulator [0.0]
PACERは、温室効果ガスの排出データのみを訓練しながら、86年間安定して温度と降水量をエミュレートする。
境界条件を考慮に入れたPACERにおいて, 対流拡散の基本的な物理法則を取り入れた。
PACERは、気候モデルの大半でベースラインを上回り、気候セットによって提供される15の気候モデルで訓練されている。
論文 参考訳(メタデータ) (2024-10-29T01:53:40Z) - Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
地球規模の気候モデルや衛星データから粗解射影を推定すると、下降問題は、より詳細な地域気候データを推定することを目的としている。
この問題は、気候変動による重大なリスクに対する効果的な適応、緩和、レジリエンスに社会的に不可欠である。
そこで本稿では, 空間的変動を抑えつつ, 微細な特徴を保ちながら, 空間的変動を捉えるためのKriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM)を提案する。
論文 参考訳(メタデータ) (2024-10-21T04:24:10Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
本稿では,気候データ,特に地域規模での降水量について,より詳細な生成モデルを提案する。
複数のLR気候変数に条件付き拡散確率モデルを用いる。
以上の結果から,下降気候データにおける条件拡散モデルの有効性が示唆された。
論文 参考訳(メタデータ) (2023-12-12T09:39:52Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Contrastive Learning for Climate Model Bias Correction and
Super-Resolution [0.0]
局地的な気候リスクを正確に見積もるために、後処理が必要である。
本稿では,画像スーパーレゾリューション(SR)とコントラスト学習生成対向ネットワーク(GAN)の組み合わせに基づく,この課題に対する代替手法を提案する。
われわれのモデルでは、NASAの2倍の空間分解能に到達し、日中の降水量と温度の両方において、同等または改善された偏差補正を達成できた。
論文 参考訳(メタデータ) (2022-11-10T19:45:17Z) - Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional
Pixel Synthesis [66.50914391487747]
高精度な高解像度画像を生成するために,高解像度の高解像度画像を用いた条件付き画素合成モデルを提案する。
我々は,本モデルにおいて,オブジェクトカウントという重要なダウンストリームタスクにおいて,フォトリアリスティックなサンプル品質を実現し,競合するベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-22T02:16:24Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
2つの気候モデルのうちの1つで第3の中間安定状態が見つかる。
我々のアプローチを組み合わせることで、海洋熱輸送とエントロピー生産の負のフィードバックが地球の気候の地形をどのように大きく変えるかを特定することができる。
論文 参考訳(メタデータ) (2020-10-20T15:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。