論文の概要: PACER: Physics Informed Uncertainty Aware Climate Emulator
- arxiv url: http://arxiv.org/abs/2410.21657v2
- Date: Wed, 30 Oct 2024 05:33:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:23:53.171821
- Title: PACER: Physics Informed Uncertainty Aware Climate Emulator
- Title(参考訳): PACER:物理インフォームされた不確かさを意識した気候エミュレータ
- Authors: Hira Saleem, Flora Salim, Cormac Purcell,
- Abstract要約: PACERは、温室効果ガスの排出データのみを訓練しながら、86年間安定して温度と降水量をエミュレートする。
境界条件を考慮に入れたPACERにおいて, 対流拡散の基本的な物理法則を取り入れた。
PACERは、気候モデルの大半でベースラインを上回り、気候セットによって提供される15の気候モデルで訓練されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Climate models serve as critical tools for evaluating the effects of climate change and projecting future climate scenarios. However, the reliance on numerical simulations of physical equations renders them computationally intensive and inefficient. While deep learning methodologies have made significant progress in weather forecasting, they are still unstable for climate emulation tasks. Here, we propose PACER, a lightweight 684K parameter Physics Informed Uncertainty Aware Climate Emulator. PACER emulates temperature and precipitation stably for 86 years while only being trained on greenhouse gas emissions data. We incorporate a fundamental physical law of advection-diffusion in PACER accounting for boundary conditions and empirically estimating the diffusion co-efficient and flow velocities from emissions data. PACER has been trained on 15 climate models provided by ClimateSet outperforming baselines across most of the climate models and advancing a new state of the art in a climate diagnostic task.
- Abstract(参考訳): 気候モデルは、気候変動の影響を評価し、将来の気候シナリオを予測するための重要なツールである。
しかし、物理方程式の数値シミュレーションに依存すると、計算集約的で非効率になる。
深層学習の手法は天気予報に大きな進歩を遂げてきたが、それでも温暖化の課題では不安定である。
そこで本研究では,684Kパラメータの軽量な物理インフォームド不確実性気候エミュレータであるPACERを提案する。
PACERは、温室効果ガスの排出データのみを訓練しながら、86年間安定して温度と降水量をエミュレートする。
本研究では,PACERが境界条件を考慮し,エミッションデータから拡散係数と流速を実験的に推定する基礎的物理法則を組み込んだ。
PACERは、気候診断タスクにおいて、気候モデルの大半でベースラインを上回り、新たな最先端技術を進めるために、ClimateSetが提供した15の気候モデルで訓練されている。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
統計力学の重要な原理を実装した連続時間プロセスであるClimODEを提案する。
ClimODEは、値保存ダイナミクスによる正確な気象進化をモデル化し、ニューラルネットワークとしてグローバルな気象輸送を学習する。
提案手法は,大域的,地域的予測において,パラメータ化の桁違いで既存のデータ駆動手法より優れる。
論文 参考訳(メタデータ) (2024-04-15T06:38:21Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - Towards Causal Representations of Climate Model Data [18.82507552857727]
この研究は因果表現学習の可能性、特に単一パーセンシャル・デコーディング(CDSD)法によるemphCausal Discoveryの可能性を掘り下げるものである。
以上の結果から,CDSDをより解釈可能で堅牢な気候モデルエミュレーションへのステップストーンとして使用するという課題,限界,約束が明らかになった。
論文 参考訳(メタデータ) (2023-12-05T16:13:34Z) - CMIP X-MOS: Improving Climate Models with Extreme Model Output
Statistics [40.517778024431244]
自然災害リスクの予測を改善するために, エクストリームモデル出力統計(X-MOS)を導入する。
この手法は, 気象観測所から得られた実測値にCMIPモデル出力を正確にマッピングするために, 深部回帰手法を用いる。
これまでの研究とは対照的に,本研究では,将来の気候パラメータ分布の尾部推定の強化に重点を置いている。
論文 参考訳(メタデータ) (2023-10-24T13:18:53Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
計算負担を軽減するため,近年の大規模分散時間GPを構築した。
我々は,古気候の確率モデルを構築するために,この2倍のスパースGPをうまく利用した。
論文 参考訳(メタデータ) (2022-11-15T14:15:04Z) - Climate-Invariant Machine Learning [0.8831201550856289]
現在の気候モデルは、モデルグリッドサイズよりも小さなスケールで発生するプロセスの表現を必要とする。
最近の機械学習(ML)アルゴリズムは、そのようなプロセス表現を改善することを約束するが、訓練されていない気候体制に悪影響を及ぼす傾向がある。
我々は、気候プロセスの知識をMLアルゴリズムに取り入れた「気候不変」MLと呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-14T07:02:57Z) - Loosely Conditioned Emulation of Global Climate Models With Generative
Adversarial Networks [2.937141232326068]
我々は、完全に結合した地球モデルから毎日の降水量をエミュレートする2つの「緩やかな条件付き」ジェネレーターネットワーク(GAN)を訓練する。
GANは時間的なサンプルを作り出すために訓練されます:地球を区別する64x128規則的な格子上の沈殿物の32日。
当社の訓練を受けたGANは、大幅に削減された計算コストで多数の実現を迅速に生成できます。
論文 参考訳(メタデータ) (2021-04-29T02:10:08Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。