論文の概要: Reinforcement Learning Based Traffic Signal Design to Minimize Queue Lengths
- arxiv url: http://arxiv.org/abs/2509.21745v1
- Date: Fri, 26 Sep 2025 01:23:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.107491
- Title: Reinforcement Learning Based Traffic Signal Design to Minimize Queue Lengths
- Title(参考訳): 強化学習に基づく待ち時間最小化のための交通信号設計
- Authors: Anirud Nandakumar, Chayan Banerjee, Lelitha Devi Vanajakshi,
- Abstract要約: 本稿では、RL(Reinforcement Learning)を活用して全信号位相の待ち行列長を最小化する適応型TSCフレームワークを提案する。
提案アルゴリズムは,都市交通シミュレータ(SUMO)を用いて実装されている。
最も優れた構成は、従来のWebster法と比較して平均キュー長を約29%削減する。
- 参考スコア(独自算出の注目度): 15.439906983758808
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Efficient traffic signal control (TSC) is crucial for reducing congestion, travel delays, pollution, and for ensuring road safety. Traditional approaches, such as fixed signal control and actuated control, often struggle to handle dynamic traffic patterns. In this study, we propose a novel adaptive TSC framework that leverages Reinforcement Learning (RL), using the Proximal Policy Optimization (PPO) algorithm, to minimize total queue lengths across all signal phases. The challenge of efficiently representing highly stochastic traffic conditions for an RL controller is addressed through multiple state representations, including an expanded state space, an autoencoder representation, and a K-Planes-inspired representation. The proposed algorithm has been implemented using the Simulation of Urban Mobility (SUMO) traffic simulator and demonstrates superior performance over both traditional methods and other conventional RL-based approaches in reducing queue lengths. The best performing configuration achieves an approximately 29% reduction in average queue lengths compared to the traditional Webster method. Furthermore, comparative evaluation of alternative reward formulations demonstrates the effectiveness of the proposed queue-based approach, showcasing the potential for scalable and adaptive urban traffic management.
- Abstract(参考訳): 交通信号の効率的な制御(TSC)は、渋滞、旅行遅延、汚染、道路安全の確保に不可欠である。
固定信号制御やアクティベート制御といった従来の手法は、しばしば動的なトラフィックパターンを扱うのに苦労する。
本研究では,PPOアルゴリズムを用いた強化学習(Reinforcement Learning, RL)を利用した適応型TSCフレームワークを提案する。
RLコントローラの高度確率的トラフィック条件を効率的に表現する課題は、拡張状態空間、オートエンコーダ表現、K-Planesにインスパイアされた表現を含む複数の状態表現によって解決される。
提案アルゴリズムは,都市移動シミュレーション(SUMO)トラフィックシミュレータを用いて実装され,従来の手法と従来のRLベースの手法の両方と比較して,待ち行列長の削減に優れた性能を示す。
最も優れた構成は、従来のWebster法と比較して平均キュー長を約29%削減する。
さらに、代替報酬の定式化の比較は、提案手法の有効性を示し、スケーラブルで適応的な都市交通管理の可能性を示している。
関連論文リスト
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Reinforcement Learning with Model Predictive Control for Highway Ramp Metering [14.389086937116582]
この研究は、交通フロー管理を強化するためのモデルベースと学習ベースの戦略の相乗効果について考察する。
制御問題は、適切なステージコスト関数を作成することにより、RLタスクとして定式化される。
RLアルゴリズムの関数近似として MPC 最適問題を利用する MPC ベースの RL アプローチを提案し,オンランプの効率的な制御について検討した。
論文 参考訳(メタデータ) (2023-11-15T09:50:54Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Efficient Pressure: Improving efficiency for signalized intersections [24.917612761503996]
交通信号制御(TSC)の問題を解決するために,強化学習(RL)が注目されている。
既存のRLベースの手法は、計算資源の面でコスト効率が良くなく、従来の手法よりも堅牢ではないため、ほとんどデプロイされない。
我々は,RTLに基づくアプローチに基づいて,トレーニングを減らし,複雑さを低減したTSCの適応制御系を構築する方法を示す。
論文 参考訳(メタデータ) (2021-12-04T13:49:58Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
非効率な信号制御手法は、交通渋滞やエネルギー浪費などの多くの問題を引き起こす可能性がある。
本稿では,アクター・クリティカル・ポリシー・グラデーション・アルゴリズムを拡張し,マルチエージェント・ディープ・決定性ポリシー・グラデーション(MADDPG)法を提案する。
論文 参考訳(メタデータ) (2021-07-13T14:11:04Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。