論文の概要: Conversational Implicatures: Modelling Relevance Theory Probabilistically
- arxiv url: http://arxiv.org/abs/2509.22354v1
- Date: Fri, 26 Sep 2025 13:50:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 20:57:54.467787
- Title: Conversational Implicatures: Modelling Relevance Theory Probabilistically
- Title(参考訳): 会話障害:モデリング関連理論を確率論的にモデル化する
- Authors: Christoph Unger, Hendrik Buschmeier,
- Abstract要約: 確率論の最近の進歩は、プラグマティクスとセマンティクスの「確率論的転回」につながった。
本稿では、類似したベイズ的アプローチが、関連理論のプラグマティクスにどのように適用できるかを考察する。
- 参考スコア(独自算出の注目度): 2.166951056466718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Bayesian probability theory and its application to cognitive science in combination with the development of a new generation of computational tools and methods for probabilistic computation have led to a 'probabilistic turn' in pragmatics and semantics. In particular, the framework of Rational Speech Act theory has been developed to model broadly Gricean accounts of pragmatic phenomena in Bayesian terms, starting with fairly simple reference games and covering ever more complex communicative exchanges such as verbal syllogistic reasoning. This paper explores in which way a similar Bayesian approach might be applied to relevance-theoretic pragmatics (Sperber & Wilson, 1995) by study a paradigmatic pragmatic phenomenon: the communication of implicit meaning by ways of (conversational) implicatures.
- Abstract(参考訳): ベイズ確率論の最近の進歩と認知科学への応用は、新しい世代の計算ツールや確率計算の手法の開発と組み合わせて、実用論や意味論における「確率的ターン」につながった。
特に、Rational Speech Act 理論の枠組みは、かなり単純な参照ゲームから始まり、動詞のシロジカル推論のようなより複雑なコミュニケーション交換をカバーし、ベイズ語で語られる実践的な現象をグリス語で広くモデル化するために開発された。
本稿では,類似したベイズ的アプローチが,(会話的)帰納法による暗黙的意味の伝達という,パラダイム的プラグマティックな現象を研究することによって,関係論的プラグマティクス(Sperber & Wilson, 1995)にどのように適用できるかを考察する。
関連論文リスト
- Advancing Interactive Explainable AI via Belief Change Theory [5.842480645870251]
この種の形式化は、対話的な説明を開発するためのフレームワークと方法論を提供する、と我々は主張する。
まず,人間と機械の間で共有される説明情報を表現するために,論理に基づく新しい形式を定義した。
次に、対話型XAIの現実シナリオについて検討し、新しい知識と既存の知識の優先順位が異なり、フォーマリズムがインスタンス化される可能性がある。
論文 参考訳(メタデータ) (2024-08-13T13:11:56Z) - The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - Regularized Conventions: Equilibrium Computation as a Model of Pragmatic
Reasoning [72.21876989058858]
本稿では,信号ゲームの正規化平衡を探索することにより,発話を生成・理解する実用的な言語理解のモデルを提案する。
このモデルでは、話者とリスナーは文脈的に適切な発話を探索し、ゲーム理論の最適規則に近づき、共有された'デフォルト'セマンティクスに近い意味のマッピングを意味づける。
論文 参考訳(メタデータ) (2023-11-16T09:42:36Z) - A Novel Neural-symbolic System under Statistical Relational Learning [47.30190559449236]
NSF-SRLと呼ばれる統計的関係学習に基づくニューラルシンボリック・フレームワークを提案する。
シンボリック推論の結果は、深層学習モデルによる予測の洗練と修正に利用され、深層学習モデルはシンボリック推論プロセスの効率を高める。
我々は、このアプローチがニューラルシンボリックシステムの新しい標準となり、汎用人工知能の分野における将来の研究を促進すると信じている。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - Scalable pragmatic communication via self-supervision [14.01704261285015]
エージェントが人間のデータを模倣するのではなく,自己監督を通じて実践的な政策を習得するアーキテクチャと学習プロセスを提案する。
本研究は, 自己超越による実用的スキルを持つ人工エージェントを装備するための, 新たな原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-08-12T15:28:30Z) - A practical introduction to the Rational Speech Act modeling framework [2.1485350418225244]
計算認知科学の最近の進歩は、形式的で実装可能なプラグマティクスのモデルにおいて、大きな進歩の道を開いた。
本稿では,ベイズ合理音声法モデリングフレームワークの実践的紹介と批判的評価を行う。
論文 参考訳(メタデータ) (2021-05-20T16:08:04Z) - Realising Active Inference in Variational Message Passing: the
Outcome-blind Certainty Seeker [3.5450828190071655]
本稿では、離散時間および状態空間におけるアクティブ推論フレームワークの完全な数学的処理について述べる。
アクティブ推論と変動メッセージパッシングの理論的関係を活用します。
完全因子化変分分布を用いることで, 期待自由エネルギーの簡易化が図れる。
論文 参考訳(メタデータ) (2021-04-23T19:40:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。