論文の概要: Dynamic Orthogonal Continual Fine-tuning for Mitigating Catastrophic Forgettings
- arxiv url: http://arxiv.org/abs/2509.23893v1
- Date: Sun, 28 Sep 2025 13:55:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.514405
- Title: Dynamic Orthogonal Continual Fine-tuning for Mitigating Catastrophic Forgettings
- Title(参考訳): 動的直交連続微調整による壊滅的植林の緩和
- Authors: Zhixin Zhang, Zeming Wei, Meng Sun,
- Abstract要約: 大規模言語モデルの継続的な学習において、破滅的な忘れは依然として重要な課題である。
本研究では,動的直交連続(DOC)ファインチューニングを提案する。これは関数方向のドリフトを追跡し,ファインチューニングプロセス中に動的に更新する新しいアプローチである。
- 参考スコア(独自算出の注目度): 13.325021114990241
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Catastrophic forgetting remains a critical challenge in continual learning for large language models (LLMs), where models struggle to retain performance on historical tasks when fine-tuning on new sequential data without access to past datasets. In this paper, we first reveal that the drift of functional directions during the fine-tuning process is a key reason why existing regularization-based methods fail in long-term LLM continual learning. To address this, we propose Dynamic Orthogonal Continual (DOC) fine-tuning, a novel approach that tracks the drift of these functional directions and dynamically updates them during the fine-tuning process. Furthermore, by adjusting the gradients of new task parameters to be orthogonal to the tracked historical function directions, our method mitigates interference between new and old tasks. Extensive experiments on various LLM continual learning benchmarks demonstrate that this approach outperforms prior methods, effectively reducing catastrophic forgetting and providing a robust tool for continuous LLM fine-tuning. Our code is available at https://github.com/meloxxxxxx/DOC.
- Abstract(参考訳): 大規模な言語モデル(LLM)では、過去のデータセットにアクセスせずに新しいシーケンシャルデータを微調整する際に、モデルが過去のタスクのパフォーマンスを維持するのに苦労する。
本稿では,従来の正規化手法が長期LLM連続学習において失敗する要因として,ファインチューニング過程における関数方向のドリフトが重要であることを最初に明らかにする。
そこで本研究では,機能方向のドリフトを追跡し,微調整プロセス中に動的に更新する動的直交連続(DOC)ファインチューニングを提案する。
さらに、追跡された履歴関数方向と直交する新しいタスクパラメータの勾配を調整することで、新しいタスクと古いタスクの干渉を緩和する。
様々なLLM連続学習ベンチマークに対する大規模な実験により、このアプローチは先行手法よりも優れており、破滅的な忘れを効果的に低減し、連続LLM微調整のための堅牢なツールを提供することを示した。
私たちのコードはhttps://github.com/meloxxxx/DOC.comで公開されています。
関連論文リスト
- Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning [19.27175827358111]
大規模言語モデル(LLM)における継続的な学習は破滅的な忘れがちである。
適応特異値分解(SVD)を利用した連続的完全微調整手法を提案する。
我々は,Encoder-decoder (T5-Large) モデルとdecoder-only (LLaMA-2 7B) モデルの両方を用いて,標準連続学習ベンチマークを広範囲に評価した。
論文 参考訳(メタデータ) (2025-04-09T17:59:42Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
提案手法は, 変分CL法より優れたカタストロフィックフォーミングを効果的に緩和する。
論文 参考訳(メタデータ) (2024-10-10T10:58:41Z) - An Effective Dynamic Gradient Calibration Method for Continual Learning [11.555822066922508]
継続的学習(CL)は機械学習の基本的なトピックであり、目標は連続的なデータとタスクでモデルをトレーニングすることだ。
メモリ制限のため、すべての履歴データを保存できないため、破滅的な忘れの問題に直面します。
モデルの各更新ステップの勾配をキャリブレーションする有効なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-07-30T16:30:09Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
本報告では, オフラヤの非効率な取扱いから, この不整合が生じることを解析する。
本稿では,ロバスト連続学習(RCL)手法を提案する。
提案手法は, 堅牢性を効果的に維持し, 新たなSOTA(State-of-the-art)結果を得る。
論文 参考訳(メタデータ) (2024-05-27T11:21:26Z) - Adaptive Retention & Correction: Test-Time Training for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Elastic Multi-Gradient Descent for Parallel Continual Learning [28.749215705746135]
動的マルチタスクシナリオにおける並列連続学習(PCL)のパラダイムについて検討する。
PCLは、学習の進捗が様々に異なる、特定されていないタスクのトレーニングによって、課題を提示する。
従来のタスクと新しいタスクのトレーニングのバランスをとるために,EMGDを用いて計算した勾配によって導かれるメモリ編集機構を提案する。
論文 参考訳(メタデータ) (2024-01-02T06:26:25Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Meta Learning MPC using Finite-Dimensional Gaussian Process
Approximations [0.9539495585692008]
制御における学習手法の実践的適用性を阻害する2つの重要な要因は、その計算複雑性と、目に見えない条件に対する限定的な一般化能力である。
本稿では,従来のタスクからのデータを活用するシステムモデルを学習することにより,適応型モデル予測制御のためのメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2020-08-13T15:59:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。