論文の概要: Preference-Based Dynamic Ranking Structure Recognition
- arxiv url: http://arxiv.org/abs/2509.24493v1
- Date: Mon, 29 Sep 2025 09:06:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.884994
- Title: Preference-Based Dynamic Ranking Structure Recognition
- Title(参考訳): 選好に基づく動的ランク付け構造認識
- Authors: Nan Lu, Jian Shi, Xin-Yu Tian,
- Abstract要約: 本稿では、嗜好に基づくデータに対するランキング構造認識の新しい枠組みを提案する。
まず、祝福されたブラッドリー・テリーモデルに対するスペクトル推定に時間的罰則を組み込むことで、動的ランキング群を同定する手法を開発する。
構造的変化を検出するために,革新的目的関数を導入し,動的プログラミングに基づく実践可能なアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 16.057238629517634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preference-based data often appear complex and noisy but may conceal underlying homogeneous structures. This paper introduces a novel framework of ranking structure recognition for preference-based data. We first develop an approach to identify dynamic ranking groups by incorporating temporal penalties into a spectral estimation for the celebrated Bradley-Terry model. To detect structural changes, we introduce an innovative objective function and present a practicable algorithm based on dynamic programming. Theoretically, we establish the consistency of ranking group recognition by exploiting properties of a random `design matrix' induced by a reversible Markov chain. We also tailor a group inverse technique to quantify the uncertainty in item ability estimates. Additionally, we prove the consistency of structure change recognition, ensuring the robustness of the proposed framework. Experiments on both synthetic and real-world datasets demonstrate the practical utility and interpretability of our approach.
- Abstract(参考訳): 嗜好に基づくデータは、しばしば複雑でうるさいように見えるが、基礎となる同質構造を隠蔽することがある。
本稿では、嗜好に基づくデータに対するランキング構造認識の新しい枠組みを提案する。
まず、祝福されたブラッドリー・テリーモデルに対するスペクトル推定に時間的罰則を組み込むことで、動的ランキング群を同定する手法を開発する。
構造的変化を検出するために,革新的目的関数を導入し,動的プログラミングに基づく実践可能なアルゴリズムを提案する。
理論的には、可逆マルコフ連鎖によって誘導されるランダムな「設計行列」の特性を利用してランキング群認識の整合性を確立する。
また、アイテム能力推定の不確かさを定量化するために、グループ逆テクニックを調整する。
さらに、構造変化認識の一貫性を証明し、提案フレームワークの堅牢性を保証する。
合成と実世界の両方のデータセットの実験は、我々のアプローチの実用性と解釈可能性を示している。
関連論文リスト
- A Novel Framework for Learning Stochastic Representations for Sequence Generation and Recognition [0.0]
シーケンシャルなデータの生成と認識は、動的環境で動作する自律システムの基本である。
パラメトリックバイアスを用いた新しいリカレントネットワーク(RNNPB)を提案する。
我々のアプローチは、時間パターンをモデル化するためのフレームワークを提供し、人工知能とロボティクスにおける堅牢なシステムの開発を前進させる。
論文 参考訳(メタデータ) (2024-12-30T07:27:50Z) - Dynamic Logistic Ensembles with Recursive Probability and Automatic Subset Splitting for Enhanced Binary Classification [2.7396014165932923]
本稿では,動的ロジスティックアンサンブルモデルを用いた二項分類手法を提案する。
我々は、データセットを複数のサブセットに自動的に分割するアルゴリズムを開発し、分類精度を高めるためにロジスティックモデルのアンサンブルを構築する。
この作業は計算効率と理論厳密さのバランスを取り、複雑な分類タスクに対して堅牢で解釈可能なソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-27T00:22:55Z) - Accelerated structured matrix factorization [0.0]
行列分解は、複雑な高次元データにおいて、実際の信号は一般に低次元構造にあるという考え方を利用する。
ベイジアン縮退を先取りして,高次元行列分解のための計算に便利な手法を考案する。
行と列のエンティティ間の依存性は、要素内でフレキシブルなスパースパターンを誘導することによってモデル化される。
論文 参考訳(メタデータ) (2022-12-13T11:35:01Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
教師なしの人物再識別(ReID)は、アノテーションを使わずに人物検索のための識別的アイデンティティの特徴を学習することを目的としている。
近年の進歩はクラスタリングに基づく擬似ラベルを活用することで実現されている。
本稿では, Pseudo Label Refinement フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-30T09:39:57Z) - Adaptive Resonance Theory-based Topological Clustering with a Divisive
Hierarchical Structure Capable of Continual Learning [8.581682204722894]
本稿では、データポイントの分布から類似度閾値を自動的に推定する機構を備えたARTベースのトポロジカルクラスタリングアルゴリズムを提案する。
情報抽出性能を向上させるために,連続学習が可能な分割階層クラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-26T02:34:52Z) - HAWKS: Evolving Challenging Benchmark Sets for Cluster Analysis [2.5329716878122404]
クラスタリングアルゴリズムの包括的なベンチマークは難しい。
厳格なベンチマークのベストプラクティスに関する合意はありません。
このようなベンチマークのフレキシブルな生成を支援するために,進化的アルゴリズムが果たす重要な役割を実証する。
論文 参考訳(メタデータ) (2021-02-13T15:01:34Z) - Provably End-to-end Label-Noise Learning without Anchor Points [118.97592870124937]
本稿では,アンカーポイントを使わずにラベルノイズ学習を実現するためのエンドツーエンドフレームワークを提案する。
提案フレームワークでは,クリーンなクラス後確率が十分に分散している場合,遷移行列を同定できる。
論文 参考訳(メタデータ) (2021-02-04T03:59:37Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - A general framework for defining and optimizing robustness [74.67016173858497]
分類器の様々な種類の堅牢性を定義するための厳密でフレキシブルなフレームワークを提案する。
我々の概念は、分類器の堅牢性は正確性とは無関係な性質と考えるべきであるという仮定に基づいている。
我々は,任意の分類モデルに適用可能な,非常に一般的なロバスト性フレームワークを開発する。
論文 参考訳(メタデータ) (2020-06-19T13:24:20Z) - Neural Ensemble Search for Uncertainty Estimation and Dataset Shift [67.57720300323928]
ニューラルネットワークのアンサンブルは、データセットシフトに対する精度、不確実性キャリブレーション、堅牢性の観点から、スタンドアロンネットワークよりも優れたパフォーマンスを実現する。
本稿では,アンサンブルをアンサンブルで自動構築する2つの手法を提案する。
得られたアンサンブルは、精度だけでなく、不確実なキャリブレーションやデータセットシフトに対する堅牢性の観点からも、深いアンサンブルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-15T17:38:15Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
本稿では,対象空間が高次元な純粋教師付き環境における一般化の枠組みを解析する。
我々は、教師付き予測のための目標埋め込みオートエンコーダ(TEA)の一般的なフレームワークのモチベーションと形式化を行い、特徴とターゲットの予測の両方から予測可能なように最適化された中間潜在表現を学習する。
論文 参考訳(メタデータ) (2020-01-23T02:37:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。