論文の概要: VNODE: A Piecewise Continuous Volterra Neural Network
- arxiv url: http://arxiv.org/abs/2509.24659v1
- Date: Mon, 29 Sep 2025 12:05:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:19.958019
- Title: VNODE: A Piecewise Continuous Volterra Neural Network
- Title(参考訳): VNODE: 連続ボルテラニューラルネットワーク
- Authors: Siddharth Roheda, Aniruddha Bala, Rohit Chowdhury, Rohan Jaiswal,
- Abstract要約: VNODEは離散的なVolterra特徴抽出とODE駆動状態の進化を交互に行う。
VNODEは、計算複雑性を改善したアートモデルの状態を一貫して上回る。
- 参考スコア(独自算出の注目度): 2.48490797934472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Volterra Neural Ordinary Differential Equations (VNODE), a piecewise continuous Volterra Neural Network that integrates nonlinear Volterra filtering with continuous time neural ordinary differential equations for image classification. Drawing inspiration from the visual cortex, where discrete event processing is interleaved with continuous integration, VNODE alternates between discrete Volterra feature extraction and ODE driven state evolution. This hybrid formulation captures complex patterns while requiring substantially fewer parameters than conventional deep architectures. VNODE consistently outperforms state of the art models with improved computational complexity as exemplified on benchmark datasets like CIFAR10 and Imagenet1K.
- Abstract(参考訳): 本稿では,非線形ボルテラフィルタと連続時間ニューラルディファレンシャル方程式を統合して画像分類を行うVolterra Neural Ordinary Differential Equations (VNODE)を提案する。
離散的なイベント処理が連続的な統合とインターリーブされる視覚野からのインスピレーションを受け、VNODEは離散的なVolterra特徴抽出とODE駆動状態の進化を交互に行う。
このハイブリッドな定式化は、従来のディープアーキテクチャよりもかなり少ないパラメータで複雑なパターンをキャプチャする。
VNODEは、CIFAR10やImagenet1Kのようなベンチマークデータセットで示されるように、計算複雑性を改善した最先端モデルよりも一貫して優れている。
関連論文リスト
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンからインスピレーションを得て、脳に似た計算の現実的なモデルを作成する。
既存のほとんどのSNNは、マルコフ特性を持つ一階常微分方程式(ODE)によってモデル化された、神経細胞膜電圧ダイナミクスの単一時間定数を仮定している。
本研究では, 膜電圧およびスパイク列車の長期依存性を分数次力学により捉えるフラクタルSPIKE微分方程式ニューラルネットワーク (fspikeDE) を提案する。
論文 参考訳(メタデータ) (2025-07-22T18:20:56Z) - Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
論文 参考訳(メタデータ) (2024-11-21T14:19:32Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - From NeurODEs to AutoencODEs: a mean-field control framework for
width-varying Neural Networks [68.8204255655161]
本稿では,動的に駆動する制御フィールドをベースとした,AutoencODEと呼ばれる新しいタイプの連続時間制御システムを提案する。
損失関数が局所凸な領域では,多くのアーキテクチャが復元可能であることを示す。
論文 参考訳(メタデータ) (2023-07-05T13:26:17Z) - Graph-based Multi-ODE Neural Networks for Spatio-Temporal Traffic
Forecasting [8.832864937330722]
長距離交通予測は、交通ネットワークで観測される複雑な時間的相関のため、依然として困難な課題である。
本稿では,GRAM-ODE(Graph-based Multi-ODE Neural Networks)と呼ばれるアーキテクチャを提案する。
実世界の6つのデータセットを用いて行った大規模な実験は、最先端のベースラインと比較して、GRAM-ODEの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-30T02:10:42Z) - Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
我々はニューラル遅延微分方程式 (Neural Delay Differential Equations, NDDEs) という,遅延を伴う連続深度ニューラルネットワークの新しいクラスを提案する。
NODE と比較して、NDDE はより強い非線形表現能力を持つ。
我々は、合成されたデータだけでなく、よく知られた画像データセットであるCIFAR10に対しても、損失の低減と精度の向上を実現している。
論文 参考訳(メタデータ) (2023-04-11T16:09:28Z) - UnICORNN: A recurrent model for learning very long time dependencies [0.0]
2次常微分方程式のハミルトン系の離散性を保つ構造に基づく新しいRNNアーキテクチャを提案する。
結果として得られるrnnは高速で可逆(時間)で、メモリ効率が良く、隠れた状態勾配の厳密な境界を導出して、爆発と消滅の勾配問題の緩和を証明する。
論文 参考訳(メタデータ) (2021-03-09T15:19:59Z) - Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and
(gradient) stable architecture for learning long time dependencies [15.2292571922932]
本稿では,リカレントニューラルネットワークのための新しいアーキテクチャを提案する。
提案するRNNは, 2次常微分方程式系の時間分解に基づく。
実験の結果,提案したRNNは,様々なベンチマークによる最先端技術に匹敵する性能を示した。
論文 参考訳(メタデータ) (2020-10-02T12:35:04Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
まず最初に、このリッチな意味では、ResNetsは意味のある動的でないことを示します。
次に、ニューラルネットワークモデルが連続力学系を表現することを実証する。
ResNetアーキテクチャの詳細な一般化としてContinuousNetを紹介します。
論文 参考訳(メタデータ) (2020-08-05T22:54:09Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。