論文の概要: A Greedy PDE Router for Blending Neural Operators and Classical Methods
- arxiv url: http://arxiv.org/abs/2509.24814v1
- Date: Mon, 29 Sep 2025 14:02:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 22:32:20.032926
- Title: A Greedy PDE Router for Blending Neural Operators and Classical Methods
- Title(参考訳): 屈曲型ニューラル演算子のためのグリージーPDEルータと古典的手法
- Authors: Sahana Rayan, Yash Patel, Ambuj Tewari,
- Abstract要約: 最適なハイブリッド反復解法が設計され、各イテレーションにおいて、ソルバのアンサンブルからソルバが選択され、それらの相補的な強みを利用する。
最適解に対する定数要素を保証するためには、欲求選択戦略が望ましいが、各ステップにおける真のエラーの知識が必要である。
本稿では,解法選択に対するグリージーアプローチを効率的に模倣する近似グリージールータを提案する。
- 参考スコア(独自算出の注目度): 24.752048932494827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When solving PDEs, classical numerical solvers are often computationally expensive, while machine learning methods can suffer from spectral bias, failing to capture high-frequency components. Designing an optimal hybrid iterative solver--where, at each iteration, a solver is selected from an ensemble of solvers to leverage their complementary strengths--poses a challenging combinatorial problem. While the greedy selection strategy is desirable for its constant-factor approximation guarantee to the optimal solution, it requires knowledge of the true error at each step, which is generally unavailable in practice. We address this by proposing an approximate greedy router that efficiently mimics a greedy approach to solver selection. Empirical results on the Poisson and Helmholtz equations demonstrate that our method outperforms single-solver baselines and existing hybrid solver approaches, such as HINTS, achieving faster and more stable convergence.
- Abstract(参考訳): PDEを解く際、古典的な数値解法はしばしば計算コストがかかるが、機械学習手法はスペクトルバイアスに悩まされ、高周波成分を捕捉できない。
最適なハイブリッド・イテレーティブ・ソルバを設計し、各イテレーションにおいて、ソルバのアンサンブルからソルバが選択され、それらの相補的な強みを利用する。
最適解に対する定数係数近似を保証するためには、欲求選択戦略が望ましいが、実際は不可能な各ステップにおける真のエラーの知識が必要である。
この問題に対して,解法選択に対するグリーディアプローチを効率的に模倣する近似グリーディルータを提案する。
Poisson と Helmholtz 方程式の実証的な結果から,本手法は HINTS のような単一解法ベースラインと既存のハイブリッド解法アプローチより優れ,より高速でより安定な収束を実現していることが示された。
関連論文リスト
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
本研究では、連続緩和による勾配に基づく更新と準量子アナリング(QQA)を組み合わせた別のアプローチを提案する。
数値実験により,本手法はiSCOと学習型解法に匹敵する性能を有する汎用解法であることが示された。
論文 参考訳(メタデータ) (2024-09-02T12:55:27Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Multi-Phase Relaxation Labeling for Square Jigsaw Puzzle Solving [73.58829980121767]
本稿では,大域最適化に基づく二乗ジグソーパズルの解法を提案する。
この手法は完全に自動化されており、事前情報を前提とせず、未知または未知のピースオリエンテーションでパズルを扱うことができる。
論文 参考訳(メタデータ) (2023-03-26T18:53:51Z) - A Copositive Framework for Analysis of Hybrid Ising-Classical Algorithms [18.075115172621096]
本稿では,Isingソルバを用いた混合二項二次プログラムの解法におけるハイブリッドアルゴリズムの形式解析について述べる。
本稿では,ハイブリッド量子古典的切削平面アルゴリズムを用いてこの問題を解決することを提案する。
論文 参考訳(メタデータ) (2022-07-27T16:47:32Z) - Optimization of Robot Trajectory Planning with Nature-Inspired and
Hybrid Quantum Algorithms [0.0]
産業規模でロボット軌道計画問題を解く。
我々のエンドツーエンドソリューションは、高度に多目的なランダムキーアルゴリズムとモデル積み重ねとアンサンブル技術を統合している。
我々は、後者が我々のより大きなパイプラインにどのように統合され、問題に対する量子対応ハイブリッドソリューションを提供するかを示す。
論文 参考訳(メタデータ) (2022-06-08T02:38:32Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - QROSS: QUBO Relaxation Parameter Optimisation via Learning Solver
Surrogates [14.905085636501438]
問題のインスタンスの集合に関するソルバデータから学習することで,quboソルバのサロゲートモデルを構築する。
このようにして、インスタンスの共通構造とそれらの解決者との相互作用を捉えることができ、ペナルティパラメータを適切に選択することができる。
qrossは分散型データセットや様々な種類のquboソルバによく一般化されている。
論文 参考訳(メタデータ) (2021-03-19T09:06:12Z) - A Hybrid Framework Using a QUBO Solver For Permutation-Based
Combinatorial Optimization [5.460573052311485]
本稿では,高性能な2次非制約バイナリ最適化器を用いて,大規模な置換に基づく問題を解くためのハイブリッドフレームワークを提案する。
通常はビット数に制限があるQUBOソルバを使用する際の課題を克服する手法を提案する。
論文 参考訳(メタデータ) (2020-09-27T07:15:25Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。