論文の概要: A Hybrid Framework Using a QUBO Solver For Permutation-Based
Combinatorial Optimization
- arxiv url: http://arxiv.org/abs/2009.12767v2
- Date: Tue, 6 Jul 2021 13:55:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-30 20:45:08.087728
- Title: A Hybrid Framework Using a QUBO Solver For Permutation-Based
Combinatorial Optimization
- Title(参考訳): 置換型組合せ最適化のためのquboソルバを用いたハイブリッドフレームワーク
- Authors: Siong Thye Goh, Sabrish Gopalakrishnan, Jianyuan Bo, Hoong Chuin Lau
- Abstract要約: 本稿では,高性能な2次非制約バイナリ最適化器を用いて,大規模な置換に基づく問題を解くためのハイブリッドフレームワークを提案する。
通常はビット数に制限があるQUBOソルバを使用する際の課題を克服する手法を提案する。
- 参考スコア(独自算出の注目度): 5.460573052311485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a hybrid framework to solve large-scale
permutation-based combinatorial problems effectively using a high-performance
quadratic unconstrained binary optimization (QUBO) solver. To do so,
transformations are required to change a constrained optimization model to an
unconstrained model that involves parameter tuning. We propose techniques to
overcome the challenges in using a QUBO solver that typically comes with
limited numbers of bits. First, to smooth the energy landscape, we reduce the
magnitudes of the input without compromising optimality. We propose a machine
learning approach to tune the parameters for good performance effectively. To
handle possible infeasibility, we introduce a polynomial-time projection
algorithm. Finally, to solve large-scale problems, we introduce a
divide-and-conquer approach that calls the QUBO solver repeatedly on small
sub-problems. We tested our approach on provably hard Euclidean Traveling
Salesman (E-TSP) instances and Flow Shop Problem (FSP). Optimality gap that is
less than $10\%$ and $11\%$ are obtained respectively compared to the
best-known approach.
- Abstract(参考訳): 本稿では,qubo(high-performance quadratic unconstrained binary optimization)ソルバを用いて,大規模置換型組合せ問題を効果的に解くためのハイブリッドフレームワークを提案する。
そのためには、制約付き最適化モデルからパラメータチューニングを伴う制約のないモデルへの変換が必要となる。
通常はビット数に制限があるQUBOソルバを使用する際の課題を克服する手法を提案する。
まず、エネルギー景観を円滑にするために、最適性を損なうことなく入力の大きさを小さくする。
本稿では,パラメータのチューニングを効果的に行う機械学習手法を提案する。
実現可能性に対処するため,多項式時間投影アルゴリズムを導入する。
最後に, 大規模問題の解法として, quboソルバを小部分問題に対して繰り返し呼び出す分割解法を提案する。
本研究では,E-TSP (Euclidean Traveling Salesman) インスタンスとフローショップ問題 (FSP) について検証した。
最もよく知られたアプローチと比較して、それぞれ10\%$未満と11\%$未満の最適性ギャップが得られます。
関連論文リスト
- Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
実世界の金融シナリオにインスパイアされたNPハード最適化問題に対して,我々の手法を適用する方法について述べる。
2つのD波量子異方体にこの問題の事例を提出し、これらのシナリオで使用される標準手法と新しい手法の性能を比較した。
論文 参考訳(メタデータ) (2024-06-11T19:59:05Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - RIGA: A Regret-Based Interactive Genetic Algorithm [14.388696798649658]
そこで本研究では,多目的最適化問題を優先的精度で解くための対話型遺伝的アルゴリズムを提案する。
我々のアルゴリズムはRIGAと呼ばれ、集約関数がパラメータ内で線形であることから、任意の多目的最適化問題に適用できる。
いくつかのパフォーマンス指標(計算時間、最適性とクエリ数のギャップ)に対して、RIGAは最先端のアルゴリズムよりも優れた結果を得る。
論文 参考訳(メタデータ) (2023-11-10T13:56:15Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
量子および量子に着想を得た最適化アルゴリズムは、学術ベンチマークや実世界の問題に適用した場合に有望な性能を示す。
しかし、QUBOソルバは単目的解法であり、複数の目的による問題の解法をより効率的にするためには、そのような多目的問題を単目的問題に変換する方法を決定する必要がある。
論文 参考訳(メタデータ) (2022-10-20T14:54:37Z) - Learning Primal Heuristics for Mixed Integer Programs [5.766851255770718]
本研究は,機械学習を用いて効果的な霊長類を自動学習できるかどうかを考察する。
本稿では,最適化問題をグラフとして表現するための新しい手法を提案する。
可変解の予測はB&B法の新たな構成であるProbabilistic Branching with guided Depth-first Searchによって行われる。
論文 参考訳(メタデータ) (2021-07-02T06:46:23Z) - QROSS: QUBO Relaxation Parameter Optimisation via Learning Solver
Surrogates [14.905085636501438]
問題のインスタンスの集合に関するソルバデータから学習することで,quboソルバのサロゲートモデルを構築する。
このようにして、インスタンスの共通構造とそれらの解決者との相互作用を捉えることができ、ペナルティパラメータを適切に選択することができる。
qrossは分散型データセットや様々な種類のquboソルバによく一般化されている。
論文 参考訳(メタデータ) (2021-03-19T09:06:12Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-04T00:26:56Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。