論文の概要: DPSformer: A long-tail-aware model for improving heavy rainfall prediction
- arxiv url: http://arxiv.org/abs/2509.25208v1
- Date: Sat, 20 Sep 2025 15:09:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 05:29:07.823055
- Title: DPSformer: A long-tail-aware model for improving heavy rainfall prediction
- Title(参考訳): DPSformer:豪雨予測の改善のための長尾認識モデル
- Authors: Zenghui Huang, Ting Shu, Zhonglei Wang, Yang Lu, Yan Yan, Wei Zhong, Hanzi Wang,
- Abstract要約: DPSformerは,高分解能分岐による豪雨イベントの表現を充実させる長テール認識モデルである。
豪雨の場合、DPSformerはベースラインの数値気象予測(NWP)モデルのCritical Success Index(CSI)を0.012から0.067に引き上げる。
我々の研究は、降雨予測のための効果的な長期的パラダイムを確立し、早期警戒システムを強化し、極端な気象事象の社会的影響を軽減するための実用的なツールを提供する。
- 参考スコア(独自算出の注目度): 48.884870685632755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and timely forecasting of heavy rainfall remains a critical challenge for modern society. Precipitation exhibits a highly imbalanced distribution: most observations record no or light rain, while heavy rainfall events are rare. Such an imbalanced distribution obstructs deep learning models from effectively predicting heavy rainfall events. To address this challenge, we treat rainfall forecasting explicitly as a long-tailed learning problem, identifying the insufficient representation of heavy rainfall events as the primary barrier to forecasting accuracy. Therefore, we introduce DPSformer, a long-tail-aware model that enriches representation of heavy rainfall events through a high-resolution branch. For heavy rainfall events $ \geq $ 50 mm/6 h, DPSformer lifts the Critical Success Index (CSI) of a baseline Numerical Weather Prediction (NWP) model from 0.012 to 0.067. For the top 1% coverage of heavy rainfall events, its Fraction Skill Score (FSS) exceeds 0.45, surpassing existing methods. Our work establishes an effective long-tailed paradigm for heavy rainfall prediction, offering a practical tool to enhance early warning systems and mitigate the societal impacts of extreme weather events.
- Abstract(参考訳): 豪雨の正確な予測は現代社会にとって重要な課題である。
降水量は非常に不均衡な分布を示しており、ほとんどの観測では降水量や降水量は記録されていないが、豪雨は稀である。
このような不均衡な分布は、大雨を効果的に予測する深層学習モデルを妨げる。
この課題に対処するため、降雨予測を長期学習問題として明示的に扱い、豪雨事象の表現不足を予測精度の第一の障壁とみなす。
そこで我々はDPSformerを紹介した。DPSformerは高分解能分岐による豪雨の表現を充実させるロングテール認識モデルである。
豪雨の場合、DPSformerは、ベースラインの数値気象予測(NWP)モデルのCritical Success Index(CSI)を0.012から0.067に引き上げる。
豪雨の上位1%では、フラクションスキルスコア(FSS)が0.45を超え、既存の手法を上回っている。
我々の研究は、降雨予測のための効果的な長期的パラダイムを確立し、早期警戒システムを強化し、極端な気象事象の社会的影響を軽減するための実用的なツールを提供する。
関連論文リスト
- Skillful High-Resolution Ensemble Precipitation Forecasting with an Integrated Deep Learning Framework [4.3313006430322165]
高解像度降水予測は、正確な天気予報を提供し、極端な気象イベントに対する効果的な対応をサポートするために不可欠である。
本研究では,高分解能アンサンブル降水予測のための物理に着想を得たディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-06T10:29:38Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
本稿では,メソスケール降水分布と小規模パターンの予測を分離するために,決定的かつ確率的な部分からなるカスケードフレームワークCasCastを提案する。
CasCastは地域の極端降水量計のベースライン(+91.8%)をはるかに上回っている。
論文 参考訳(メタデータ) (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Unleashing the Power of Dynamic Mode Decomposition and Deep Learning for
Rainfall Prediction in North-East India [0.27488316163114823]
本研究では,DMD(Dynamic Mode Decomposition)とLSTM(Long Short-Term Memory)という2つのデータ駆動手法を用いた降雨予測手法について検討した。
複数の気象観測所から得られた過去の降雨データを用いて,将来の降雨パターンを予測するためのモデルを訓練し,検証した。
以上の結果から,インド北東部地域の降雨予測精度は,データ駆動手法により著しく向上することが示唆された。
論文 参考訳(メタデータ) (2023-09-17T17:58:06Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Generative Modeling of High-resolution Global Precipitation Forecasts [2.1485350418225244]
GAN(Generative Adversarial Network)を用いた最先端の深層学習降水モデル(FourCastNet)のアーキテクチャとトレーニングプロセスの改善について述べる。
我々の改良は, 降水量の極端にパーセンタイルを捕捉する上で, 1~2日間のリードタイムでの予測能力において, 最先端のNWPモデルに匹敵する優れた性能を実現している。
論文 参考訳(メタデータ) (2022-10-22T17:21:16Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
本稿では,降水流の識別と注意の両方を含む新しい深層学習モデルを提案する。
このモデルは、レーダーデータと実際の雨データの両方を含む、新しく構築されたベンチマークデータセットで検討される。
論文 参考訳(メタデータ) (2021-02-16T14:22:54Z) - Fusion of rain radar images and wind forecasts in a deep learning model
applied to rain nowcasting [0.0]
気象予測モデルによる降雨レーダー画像と風速の融合により,深層学習モデルを訓練する。
地平線時間30分で予測する中・高降雨時の光流量をF1スコアで計算し, ネットワークの性能は8%向上した。
降雨と風力データの融合は、訓練過程の安定化にも寄与し、特に降雨の予測が難しい地域では大きな改善をもたらした。
論文 参考訳(メタデータ) (2020-12-09T12:50:06Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。