論文の概要: Simple, Fast and Efficient Injective Manifold Density Estimation with Random Projections
- arxiv url: http://arxiv.org/abs/2509.25228v1
- Date: Wed, 24 Sep 2025 15:01:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:44:59.910033
- Title: Simple, Fast and Efficient Injective Manifold Density Estimation with Random Projections
- Title(参考訳): ランダム射影を用いた簡易, 高速, 効率なインジェクティブマニフォールド密度推定
- Authors: Ahmad Ayaz Amin,
- Abstract要約: 本稿では,インジェクティブ正規化フローの原理的フレームワークであるRandom Projection Flows (RPFs)を紹介する。
RPFはランダム行列理論とランダム射影幾何学のツールを利用する。
- 参考スコア(独自算出の注目度): 5.076419064097734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Random Projection Flows (RPFs), a principled framework for injective normalizing flows that leverages tools from random matrix theory and the geometry of random projections. RPFs employ random semi-orthogonal matrices, drawn from Haar-distributed orthogonal ensembles via QR decomposition of Gaussian matrices, to project data into lower-dimensional latent spaces for the base distribution. Unlike PCA-based flows or learned injective maps, RPFs are plug-and-play, efficient, and yield closed-form expressions for the Riemannian volume correction term. We demonstrate that RPFs are both theoretically grounded and practically effective, providing a strong baseline for generative modeling and a bridge between random projection theory and normalizing flows.
- Abstract(参考訳): 本稿では,ランダム行列理論とランダム射影幾何学のツールを利用する射影正規化フローの原理的フレームワークであるランダム射影フロー(RPF)を紹介する。
RPFは、ガウス行列のQR分解を通じてHaar分布直交アンサンブルから引き出されたランダムな半直交行列を用いて、ベース分布の低次元潜在空間にデータを投影する。
PCA ベースのフローや学習された射影写像とは異なり、RPF はプラグ・アンド・プレイであり、リーマン体積補正項の閉形式表現である。
RPFは理論的基礎と実用的有効性の両方を証明し、生成モデルのための強力なベースラインとランダム射影理論と正規化フローの間の橋渡しを提供する。
関連論文リスト
- Efficient Adaptation of Pre-trained Vision Transformer underpinned by Approximately Orthogonal Fine-Tuning Strategy [57.54306942529943]
約直交微調整(AOFT)による低ランク重量行列の表現法を提案する。
本手法は,下流画像分類タスクにおける競合性能を実現する。
論文 参考訳(メタデータ) (2025-07-17T16:09:05Z) - Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices [4.678796432640703]
円形および非平坦なデータ分布は、データ科学の様々な領域で広く使われている。
このようなデータの基盤となる幾何学を考慮に入れるための原則的なアプローチは、重要なものである。
この研究は、古典的な機械学習と統計手法をより複雑で構造化されたデータに拡張するための基礎となる。
論文 参考訳(メタデータ) (2025-02-03T16:46:46Z) - Bias-Corrected Joint Spectral Embedding for Multilayer Networks with Invariant Subspace: Entrywise Eigenvector Perturbation and Inference [0.0]
本稿では、新しいバイアス補正型共同スペクトル埋め込みアルゴリズムを用いて、異種多重ネットワーク間の不変部分空間を推定する。
提案アルゴリズムは、閉形式バイアス式を利用して、正方形ネットワーク隣接行列の和の対角偏差を校正する。
提案アルゴリズムのエントリワイドな部分空間摂動境界を含むエントリワイドな部分空間推定理論の完全なレシピを確立する。
論文 参考訳(メタデータ) (2024-06-12T03:36:55Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Error Bounds for Learning with Vector-Valued Random Features [2.375038919274297]
本稿では,ベクトル値ランダム特徴量(RF)を用いた学習の包括的誤り解析を提供する。
この理論は、完全な無限次元入力出力設定におけるRFリッジ回帰のために開発された。
論文 参考訳(メタデータ) (2023-05-26T18:00:08Z) - Simplex Random Features [53.97976744884616]
ソフトマックスおよびガウスカーネルの非バイアス近似のための新しいランダム特徴(RF)機構であるSimplex Random Features (SimRFs)を提案する。
我々は,これらのカーネルの非バイアス推定値に対して,SimRFが最小平均二乗誤差(MSE)を提供することを示す。
ポイントワイドカーネル推定,非パラメトリック分類,スケーラブルトランスフォーマーなどの設定において,SimRFによる一貫したゲインを示す。
論文 参考訳(メタデータ) (2023-01-31T18:53:39Z) - Riemannian statistics meets random matrix theory: towards learning from
high-dimensional covariance matrices [2.352645870795664]
本稿では,高次元共分散行列の空間上でのリーマン・ガウス分布に関連する正規化因子の計算方法が存在しないことを示す。
この欠落法は、ランダム行列理論との予期せぬ新しい関係から来ていることが示されている。
シミュレーション実験により、この新たな近似が現実のデータセットへの応用を妨げる困難を解き放つ方法が示されている。
論文 参考訳(メタデータ) (2022-03-01T03:16:50Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。