論文の概要: Autonomous Multi-Robot Infrastructure for AI-Enabled Healthcare Delivery and Diagnostics
- arxiv url: http://arxiv.org/abs/2509.26106v1
- Date: Tue, 30 Sep 2025 11:27:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-02 14:33:21.842921
- Title: Autonomous Multi-Robot Infrastructure for AI-Enabled Healthcare Delivery and Diagnostics
- Title(参考訳): AIによる医療提供・診断のための自律型マルチロボット基盤
- Authors: Nakhul Kalaivanan, Senthil Arumugam Muthukumaraswamy, Girish Balasubramanian,
- Abstract要約: 本研究では、ウェアラブルヘルスセンサ、RFベースのコミュニケーション、AIによる意思決定支援を取り入れた医療用マルチロボットシステムを提案する。
シミュレーションされた病院環境内では、患者監視、医療提供、緊急支援を行うためにリーダー・フォロワー・スワム構成を採用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This research presents a multi-robot system for inpatient care, designed using swarm intelligence principles and incorporating wearable health sensors, RF-based communication, and AI-driven decision support. Within a simulated hospital environment, the system adopts a leader-follower swarm configuration to perform patient monitoring, medicine delivery, and emergency assistance. Due to ethical constraints, live patient trials were not conducted; instead, validation was carried out through controlled self-testing with wearable sensors. The Leader Robot acquires key physiological parameters, including temperature, SpO2, heart rate, and fall detection, and coordinates other robots when required. The Assistant Robot patrols corridors for medicine delivery, while a robotic arm provides direct drug administration. The swarm-inspired leader-follower strategy enhanced communication reliability and ensured continuous monitoring, including automated email alerts to healthcare staff. The system hardware was implemented using Arduino, Raspberry Pi, NRF24L01 RF modules, and a HuskyLens AI camera. Experimental evaluation showed an overall sensor accuracy above 94%, a 92% task-level success rate, and a 96% communication reliability rate, demonstrating system robustness. Furthermore, the AI-enabled decision support was able to provide early warnings of abnormal health conditions, highlighting the potential of the system as a cost-effective solution for hospital automation and patient safety.
- Abstract(参考訳): 本研究では,Swarm知能原則を用いて設計され,ウェアラブル型健康センサ,RFベースのコミュニケーション,AIによる意思決定支援を取り入れた,入院医療のためのマルチロボットシステムを提案する。
シミュレーションされた病院環境内では、患者監視、医療提供、緊急支援を行うためにリーダー・フォロワー・スワム構成を採用する。
倫理的制約により、実地での臨床試験は行われず、代わりにウェアラブルセンサーによる自己検査によって検証が行われた。
リーダーロボットは、温度、SpO2、心拍数、転倒検出などの重要な生理的パラメータを取得し、必要に応じて他のロボットを調整する。
補助ロボットは医療提供のための回廊をパトロールし、ロボットアームは直接薬物管理を提供する。
Swarmにインスパイアされたリーダ・フォロワー戦略は、コミュニケーションの信頼性を高め、医療スタッフへのEメールの自動アラートを含む継続的監視を保証する。
システムハードウェアはArduino、Raspberry Pi、NRF24L01 RFモジュール、HuskyLens AIカメラを使用して実装された。
実験により,94%以上のセンサ精度,92%のタスクレベルの成功率,96%の通信信頼性を示し,システムの堅牢性を示した。
さらに、AIを利用した意思決定支援は、異常な健康状態の早期警告を可能にし、病院の自動化と患者の安全のための費用対効果の高いソリューションとしてのシステムの可能性を強調した。
関連論文リスト
- Organ-Agents: Virtual Human Physiology Simulator via LLMs [66.40796430669158]
オルガン-エージェント(Organ-Agents)は、LDM駆動のエージェントを介して人間の生理学をシミュレートする多エージェントフレームワークである。
症例は7,134例,コントロール7,895例で,9系統および125変数にわたる高分解能トラジェクトリを作成した。
臓器抗原は4,509人の保留患者に対して高いシミュレーション精度を達成し, システムごとのMSE0.16とSOFA系重症度層間の堅牢性を示した。
論文 参考訳(メタデータ) (2025-08-20T01:58:45Z) - AI on the Pulse: Real-Time Health Anomaly Detection with Wearable and Ambient Intelligence [4.494833548150712]
我々は、患者を継続的に監視する現実世界の異常検知システムであるPulseにAIを導入する。
SoTA(State-of-the-art)のユニバーサル時系列モデルであるUniTSによって、我々のフレームワークは患者のユニークな生理的および行動的パターンを自律的に学習する。
論文 参考訳(メタデータ) (2025-08-05T13:24:15Z) - Beyond Benchmarks: Dynamic, Automatic And Systematic Red-Teaming Agents For Trustworthy Medical Language Models [87.66870367661342]
大規模言語モデル(LLM)は、医療におけるAIアプリケーションで使用される。
LLMを継続的にストレステストするレッドチームフレームワークは、4つのセーフティクリティカルなドメインで重大な弱点を明らかにすることができる。
敵エージェントのスイートは、自律的に変化するテストケースに適用され、安全でないトリガー戦略を特定し、評価する。
私たちのフレームワークは、進化可能でスケーラブルで信頼性の高い、次世代の医療AIのセーフガードを提供します。
論文 参考訳(メタデータ) (2025-07-30T08:44:22Z) - Simulated patient systems are intelligent when powered by large language model-based AI agents [32.73072809937573]
我々は,大規模言語モデルに基づくAIエージェントを用いた,インテリジェントシミュレートされた患者システムAIatientを開発した。
このシステムにはRetrieval Augmented Generationフレームワークが組み込まれており、複雑な推論のために6つのタスク固有のLLMベースのAIエージェントが使用されている。
シミュレーションの現実のために、このシステムはAIPatient KG (Knowledge Graph) も利用している。
論文 参考訳(メタデータ) (2024-09-27T17:17:15Z) - A Health Monitoring System Based on Flexible Triboelectric Sensors for
Intelligence Medical Internet of Things and its Applications in Virtual
Reality [4.522609963399036]
Internet of Medical Things (IoMT)は、IoT(Internet of Things)テクノロジと医療アプリケーションを組み合わせたプラットフォームである。
本研究では、フレキシブルな三体電センサと深層学習支援データ分析の相乗的統合により、堅牢でインテリジェントなIoMTシステムを設計した。
パーキンソン病(PD)患者の手首の動きを検知・解析するために4つの三体電センサをリストバンドに組み込んだ。
この革新的なアプローチにより、PD患者の微妙な動きと微妙な運動を正確に捉え、精査することが可能となり、患者の状況に対する洞察と総合的な評価が得られた。
論文 参考訳(メタデータ) (2023-09-13T01:01:16Z) - Remote patient monitoring using artificial intelligence: Current state,
applications, and challenges [13.516357215412024]
本研究の目的は,導入技術,RPMに対するAIの影響,AI対応RPMの課題と動向など,RPMシステムの総合的なレビューを行うことである。
RPMにおけるAIの役割は、身体活動の分類から慢性疾患のモニタリング、緊急時におけるバイタルサインのモニタリングまで様々である。
このレビュー結果は、AI対応のRPMアーキテクチャが医療モニタリングアプリケーションを変革したことを示している。
論文 参考訳(メタデータ) (2023-01-19T06:22:14Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
パーキンソン病(PD)研究における技術ベースアセスメントの実施状況について報告した。
本研究は、両手同期スマートウォッチ測定におけるPDサンプルサイズとして最大である。
論文 参考訳(メタデータ) (2022-05-11T09:12:59Z) - Lio -- A Personal Robot Assistant for Human-Robot Interaction and Care
Applications [0.35390706902408026]
Lioはモバイルロボットプラットフォームで、人間とロボットのインタラクションとパーソナルケアアシスタントタスクのために明示的に設計された多機能アームを備えている。
リオは、軟質の人工リアクター材料を全面的にカバーし、衝突検出、制限速度、力を持つことによって本質的に安全である。
新型コロナウイルス(COVID-19)のパンデミックの間、Lioは急速に調整され、消毒や遠隔での体温測定などの追加機能を実現した。
論文 参考訳(メタデータ) (2020-06-16T09:37:44Z) - Reconfiguring health services to reduce the workload of caregivers
during the COVID-19 outbreak using an open-source scalable platform for
remote digital monitoring and coordination of care in hospital Command
Centres [55.41644538483948]
在宅患者を自動的に遠隔監視するデジタル技術について述べる。
患者は単純で自己申告されたアンケートに回答し、そのデータはリアルタイムで最寄りの病院のコマンドセンターに送信される。
論文 参考訳(メタデータ) (2020-03-12T16:08:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。