論文の概要: Comparative Analysis of Ant Colony Optimization and Google OR-Tools for Solving the Open Capacitated Vehicle Routing Problem in Logistics
- arxiv url: http://arxiv.org/abs/2509.26216v1
- Date: Tue, 30 Sep 2025 13:18:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.546155
- Title: Comparative Analysis of Ant Colony Optimization and Google OR-Tools for Solving the Open Capacitated Vehicle Routing Problem in Logistics
- Title(参考訳): 論理学におけるオープンキャパシタン化車両ルーティング問題の解法におけるAnt Colony OptimizationとGoogle OR-Toolsの比較解析
- Authors: Assem Omar, Youssef Omar, Marwa Solayman, Hesham Mansour,
- Abstract要約: Open Capacitated Vehicle Routing Problem (OCVRP)は、地理的に分散した顧客に最適な配送ルートを見つけることを扱う。
本研究は,OCVRPソリューションのアルゴリズムとして,自然に着想を得たメタヒューリスティックであるAnt Colony Optimization (ACO)と,業界標準の最適化ツールキットであるGoogle OR-Toolsの2つを比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modern logistics management systems, route planning requires high efficiency. The Open Capacitated Vehicle Routing Problem (OCVRP) deals with finding optimal delivery routes for a fleet of vehicles serving geographically distributed customers, without requiring the vehicles to return to the depot after deliveries. The present study is comparative in nature and speaks of two algorithms for OCVRP solution: Ant Colony Optimization (ACO), a nature-inspired metaheuristic; and Google OR-Tools, an industry-standard toolkit for optimization. Both implementations were developed in Python and using a custom dataset. Performance appraisal was based on routing efficiency, computation time, and scalability. The results show that ACO allows flexibility in routing parameters while OR-Tools runs much faster with more consistency and requires less input. This could help choose among routing strategies for scalable real-time logistics systems.
- Abstract(参考訳): 現代の物流管理システムでは、ルートプランニングは高い効率を必要とする。
Open Capacitated Vehicle Routing Problem (OCVRP)は、地理的に分散した顧客にサービスを提供する車両の最適な配送ルートを見つけることを扱う。
本研究は,OCVRPソリューションのアルゴリズムとして,自然に着想を得たメタヒューリスティックであるAnt Colony Optimization (ACO)と,業界標準の最適化ツールキットであるGoogle OR-Toolsの2つを比較した。
どちらの実装もPythonで開発され、カスタムデータセットを使用していた。
パフォーマンス評価はルーティング効率、計算時間、スケーラビリティに基づいていた。
その結果、ACOはルーティングパラメータの柔軟性を許容し、OR-Toolsはより一貫性を持ってより高速に動作し、少ないインプットを必要とすることがわかった。
これにより、スケーラブルなリアルタイムロジスティクスシステムのためのルーティング戦略を選択することができる。
関連論文リスト
- Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [53.75036695728983]
車両ルーティング問題 (VRP) は進化的最適化における基本的なNPハード問題である。
本稿では、強化学習エージェントを事前のインスタンスで訓練し、初期解を迅速に生成する最適化フレームワークを提案する。
このフレームワークは、様々な時間予算において、現在の最先端のソルバよりも一貫して優れています。
論文 参考訳(メタデータ) (2025-04-08T15:21:01Z) - SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins [78.53885607559958]
無線対応経路計画フレームワークであるSCoTTを提案する。
SCoTT は DP-WA* の2% 以内で経路ゲインを達成し, 連続的に短い軌道を生成できることを示す。
また,ガゼボシミュレーションにおいて,SCoTTをROSノードとして配置することにより,本手法の実用性を示す。
論文 参考訳(メタデータ) (2024-11-27T10:45:49Z) - Multi-Agent Environments for Vehicle Routing Problems [1.0179489519625304]
本稿では,従来の車両ルーティング問題をシミュレートするマルチエージェント環境からなるライブラリを提案する。
PyTorch上に構築されたこのライブラリは、新しいルーティング問題のカスタマイズと導入を容易にする、柔軟なモジュラーアーキテクチャ設計を提供する。
論文 参考訳(メタデータ) (2024-11-21T18:46:23Z) - Learn to Solve Vehicle Routing Problems ASAP: A Neural Optimization Approach for Time-Constrained Vehicle Routing Problems with Finite Vehicle Fleet [0.0]
車両の車両サイズが有限である時間制約付静電容量VRPを解くためのNCO手法を提案する。
この手法は、柔軟性と堅牢な一般化の両方を示す、適切で費用効率のよい解を見つけることができる。
論文 参考訳(メタデータ) (2024-11-07T15:16:36Z) - Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows [58.891409372784516]
本稿では,Roulette Wheel Method (RWPSO) を用いた新しいPSO手法を提案する。
RWPSOのSolomon VRPTWベンチマークデータセットを用いた実験は、RWPSOが文学の他の最先端アルゴリズムと競合していることを示している。
論文 参考訳(メタデータ) (2023-06-04T09:18:02Z) - Combinatorial Optimization enriched Machine Learning to solve the
Dynamic Vehicle Routing Problem with Time Windows [5.4807970361321585]
最適化層を組み込んだ新しい機械学習パイプラインを提案する。
最近,EURO Meets NeurIPS Competition at NeurIPS 2022において,このパイプラインを波による動的車両ルーティング問題に適用した。
提案手法は,提案した動的車両経路問題の解法において,他の全ての手法よりも優れていた。
論文 参考訳(メタデータ) (2023-04-03T08:23:09Z) - Preference-Aware Delivery Planning for Last-Mile Logistics [3.04585143845864]
最適化手法と機械学習手法の両方の長所を組み合わせた,学習可能なパラメータを持つ新しい階層的経路を提案する。
Amazon Last Mile Research Challengeが提供する実際のデリバリデータセットを使用することで、最適化と機械学習コンポーネントの両方を持つことの重要性を実証する。
論文 参考訳(メタデータ) (2023-03-08T02:10:59Z) - Integrated Decision and Control: Towards Interpretable and Efficient
Driving Intelligence [13.589285628074542]
自動走行車のための解釈可能かつ効率的な意思決定・制御フレームワークを提案する。
駆動タスクを階層的に構造化されたマルチパス計画と最適追跡に分解する。
その結果,オンライン計算の効率性や交通効率,安全性などの運転性能が向上した。
論文 参考訳(メタデータ) (2021-03-18T14:43:31Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。