論文の概要: WaveMind: Towards a Conversational EEG Foundation Model Aligned to Textual and Visual Modalities
- arxiv url: http://arxiv.org/abs/2510.00032v1
- Date: Fri, 26 Sep 2025 06:21:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.113222
- Title: WaveMind: Towards a Conversational EEG Foundation Model Aligned to Textual and Visual Modalities
- Title(参考訳): WaveMind: テキストと視覚のモダリティを考慮した会話型脳波基礎モデルを目指して
- Authors: Ziyi Zeng, Zhenyang Cai, Yixi Cai, Xidong Wang, Junying Chen, Rongsheng Wang, Yipeng Liu, Siqi Cai, Benyou Wang, Zhiguo Zhang, Haizhou Li,
- Abstract要約: 脳波信号は認知過程と固有の神経状態の両方を同時に符号化する。
我々は、EEG信号とその対応するモダリティを統一意味空間にマッピングし、一般化された解釈を実現する。
結果として得られたモデルは、柔軟でオープンな会話をサポートしながら、堅牢な分類精度を示す。
- 参考スコア(独自算出の注目度): 55.00677513249723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) interpretation using multimodal large language models (MLLMs) offers a novel approach for analyzing brain signals. However, the complex nature of brain activity introduces critical challenges: EEG signals simultaneously encode both cognitive processes and intrinsic neural states, creating a mismatch in EEG paired-data modality that hinders effective cross-modal representation learning. Through a pivot investigation, we uncover complementary relationships between these modalities. Leveraging this insight, we propose mapping EEG signals and their corresponding modalities into a unified semantic space to achieve generalized interpretation. To fully enable conversational capabilities, we further introduce WaveMind-Instruct-338k, the first cross-task EEG dataset for instruction tuning. The resulting model demonstrates robust classification accuracy while supporting flexible, open-ended conversations across four downstream tasks, thereby offering valuable insights for both neuroscience research and the development of general-purpose EEG models.
- Abstract(参考訳): マルチモーダル大言語モデル(MLLM)を用いた脳波解析(EEG)は、脳信号を解析するための新しいアプローチを提供する。
脳波信号は認知過程と内在性神経状態の両方を同時に符号化し、効果的なクロスモーダル表現学習を妨げる脳波ペアデータモダリティのミスマッチを生成する。
ピボット調査を通じて、これらのモダリティ間の相補的な関係を明らかにする。
この知見を生かして、一般化された解釈を実現するために、脳波信号とその対応するモダリティを統一的な意味空間にマッピングすることを提案する。
対話機能を完全に実現するために,最初のクロスタスクEEGデータセットであるWaveMind-Instruct-338kを導入する。
得られたモデルは、4つの下流タスクにわたる柔軟なオープンエンド会話をサポートしながら、堅牢な分類精度を示し、神経科学研究と汎用脳波モデルの開発に有用な洞察を提供する。
関連論文リスト
- CodeBrain: Towards Decoupled Interpretability and Multi-Scale Architecture for EEG Foundation Model [52.466542039411515]
EEGファウンデーションモデル(EFM)は、タスク固有のモデルのスケーラビリティ問題に対処するために登場した。
このギャップを埋めるために設計された2段階のEMFであるCodeBrainを紹介します。
第1段階では、異種時間・周波数の脳波信号を離散トークンに分解するTFDual-Tokenizerを導入する。
第2段階では、構造化されたグローバル畳み込みとスライディングウインドウの注意を結合したマルチスケールEEGSSMアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-06-10T17:20:39Z) - BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [50.76802709706976]
異種脳波とMEG記録を対象とする脳基礎モデルBrain Omniを提案する。
多様なデータソースを統一するために、脳の活動を離散表現に定量化する最初のトークンであるBrainTokenizerを紹介します。
EEGの合計1,997時間、MEGデータの656時間は、事前トレーニングのために公開されているソースからキュレーションされ、標準化されている。
論文 参考訳(メタデータ) (2025-05-18T14:07:14Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - EEG decoding with conditional identification information [7.873458431535408]
脳波信号を復号することは、人間の脳を解き放ち、脳とコンピュータのインターフェースを進化させるのに不可欠である。
従来の機械学習アルゴリズムは、高ノイズレベルと脳波信号の個人間変動によって妨げられている。
ディープニューラルネットワーク(DNN)の最近の進歩は、その高度な非線形モデリング能力のために、将来性を示している。
論文 参考訳(メタデータ) (2024-03-21T13:38:59Z) - Brain-Driven Representation Learning Based on Diffusion Model [25.375490061512]
本研究では,拡散確率モデル(DDPM)について検討した。
条件付きオートエンコーダとDDPMを併用することで、我々の新しいアプローチは従来の機械学習アルゴリズムよりもかなり優れています。
本研究は,音声関連脳波信号解析のための高度な計算手法として,DDPMの可能性を強調した。
論文 参考訳(メタデータ) (2023-11-14T05:59:58Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - Enhancing Affective Representations of Music-Induced EEG through
Multimodal Supervision and latent Domain Adaptation [34.726185927120355]
脳波の重み付けとして音楽信号を用い,その意味的対応を共通の表現空間に投影することを目的としている。
我々は、LSTMに基づくアテンションモデルと、音楽タギングのための事前訓練されたモデルを組み合わせたバイモーダル・フレームワークと、その2つのモードの分布を整列するリバース・ドメイン・ディミネータを併用して、バイモーダル・フレームワークを利用する。
脳波入力クエリに関連音楽サンプルを提供することにより、モダリティのいずれからも、間接的に、教師付き予測を行うことで、感情認識に利用することができる。
論文 参考訳(メタデータ) (2022-02-20T07:32:12Z) - Correlation based Multi-phasal models for improved imagined speech EEG
recognition [22.196642357767338]
本研究の目的は,特定の音声単位に対応する音声の動きを,話し,想像,実行しながら記録された多相脳波データに含まれる並列情報から利益を得ることである。
ニューラルネットワークを用いた二相共通表現学習モジュールは、解析フェーズと支援フェーズ間の相関をモデル化する。
提案手法は復号化時の多相データの非可利用性をさらに扱う。
論文 参考訳(メタデータ) (2020-11-04T09:39:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。