論文の概要: Deep Learning Approaches with Explainable AI for Differentiating Alzheimer Disease and Mild Cognitive Impairment
- arxiv url: http://arxiv.org/abs/2510.00048v2
- Date: Mon, 06 Oct 2025 23:51:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 15:38:21.687617
- Title: Deep Learning Approaches with Explainable AI for Differentiating Alzheimer Disease and Mild Cognitive Impairment
- Title(参考訳): 説明可能なAIを用いた深層学習によるアルツハイマー病と軽度認知障害の鑑別
- Authors: Fahad Mostafa, Kannon Hossain, Hafiz Khan,
- Abstract要約: アルツハイマー病の早期かつ正確な診断は、効果的な臨床介入に重要である。
構造的磁気共鳴画像を用いたアルツハイマー病分類のためのハイブリッドディープラーニングアンサンブルフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early and accurate diagnosis of Alzheimer Disease is critical for effective clinical intervention, particularly in distinguishing it from Mild Cognitive Impairment, a prodromal stage marked by subtle structural changes. In this study, we propose a hybrid deep learning ensemble framework for Alzheimer Disease classification using structural magnetic resonance imaging. Gray and white matter slices are used as inputs to three pretrained convolutional neural networks such as ResNet50, NASNet, and MobileNet, each fine tuned through an end to end process. To further enhance performance, we incorporate a stacked ensemble learning strategy with a meta learner and weighted averaging to optimally combine the base models. Evaluated on the Alzheimer Disease Neuroimaging Initiative dataset, the proposed method achieves state of the art accuracy of 99.21% for Alzheimer Disease vs. Mild Cognitive Impairment and 91.0% for Mild Cognitive Impairment vs. Normal Controls, outperforming conventional transfer learning and baseline ensemble methods. To improve interpretability in image based diagnostics, we integrate Explainable AI techniques by Gradient weighted Class Activation, which generates heatmaps and attribution maps that highlight critical regions in gray and white matter slices, revealing structural biomarkers that influence model decisions. These results highlight the frameworks potential for robust and scalable clinical decision support in neurodegenerative disease diagnostics.
- Abstract(参考訳): 早期かつ正確なアルツハイマー病の診断は、特に微妙な構造変化を特徴とする軽度認知障害と区別する上で、効果的な臨床介入に重要である。
本研究では,構造磁気共鳴画像を用いたアルツハイマー病分類のためのハイブリッドディープラーニングアンサンブルフレームワークを提案する。
グレーとホワイトのマタースライスは、ResNet50、NASNet、MobileNetなどの事前訓練された3つの畳み込みニューラルネットワークの入力として使用され、それぞれがエンドツーエンドのプロセスを通じて微調整される。
さらに性能を向上させるために,メタ学習器と重み付き平均化を併用して,基本モデルと最適に組み合わせる。
アルツハイマー病ニューロイメージングイニシアチブデータセットに基づいて,アルツハイマー病と軽度認知障害の99.21%,軽度認知障害と正常制御の91.0%の精度を達成し,従来の移動学習とベースラインアンサンブル法より優れていた。
画像ベース診断における解釈性を改善するために、グレードウェイトなクラスアクティベーションによる説明可能なAI技術を統合し、灰色と白の物質スライスにおける臨界領域をハイライトするヒートマップと属性マップを生成し、モデル決定に影響を与える構造的バイオマーカーを明らかにする。
これらの結果は、神経変性疾患診断における堅牢でスケーラブルな臨床診断支援のフレームワークの可能性を強調した。
関連論文リスト
- MRI Patterns of the Hippocampus and Amygdala for Predicting Stages of Alzheimer's Progression: A Minimal Feature Machine Learning Framework [0.0]
本研究では、構造的MRIデータを活用する最小機能機械学習フレームワークを提案し、興味のある領域として海馬と扁桃体に焦点を当てた。
このフレームワークは、特徴選択による次元の呪いに対処し、地域固有のボクセル情報を利用し、ノイズを低減して分類性能を向上させる革新的なデータ組織を実装している。
論文 参考訳(メタデータ) (2025-01-10T10:47:00Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models [2.4561590439700076]
本研究では,最新のCNNを特徴とする深層学習技術を活用することで,アルツハイマー病(AD)のMRIデータを分類することに焦点を当てた。
アルツハイマー病は高齢者の認知症の主要な原因であり、徐々に認知機能障害を引き起こす不可逆的な脳疾患である。
将来、この研究は、信号、画像、その他のデータを含む他の種類の医療データを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-05-20T15:44:07Z) - SNeurodCNN: Structure-focused Neurodegeneration Convolutional Neural Network for Modelling and Classification of Alzheimer's Disease [0.0]
認知症の主要な形態であるアルツハイマー病(AD)は、世界的な課題となっている。
現在の臨床診断は、放射線技師の専門家による解釈に依存しており、これは人間の誤りを招きやすい。
本稿では,SNeurodCNNという新しい構造に着目した神経変性CNNアーキテクチャを含むディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-08T14:33:57Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
本稿では,脳疾患診断のためのマルチスケールFCN解析を行うための新しいフレームワークを提案する。
まず、マルチスケールFCNを計算するために、明確に定義されたマルチスケールアトラスのセットを用いる。
そこで我々は, 生物的に有意な脳階層的関係を多スケールアトラスの領域で利用し, 結節プールを行う。
論文 参考訳(メタデータ) (2022-09-22T04:17:57Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。