論文の概要: Variable Rate Image Compression via N-Gram Context based Swin-transformer
- arxiv url: http://arxiv.org/abs/2510.00058v1
- Date: Sun, 28 Sep 2025 23:46:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.146674
- Title: Variable Rate Image Compression via N-Gram Context based Swin-transformer
- Title(参考訳): N-Gramコンテキストに基づくスウィン変換器による可変レート画像圧縮
- Authors: Priyanka Mudgal, Feng Liu,
- Abstract要約: 本稿では,学習画像圧縮のためのN-gramコンテキストベースのSwin変換器を提案する。
我々は,N-gramコンテキストをSwin Transformerに組み込むことで,高解像度画像再構成における大域無視の限界を克服する。
- 参考スコア(独自算出の注目度): 5.0997677000394654
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents an N-gram context-based Swin Transformer for learned image compression. Our method achieves variable-rate compression with a single model. By incorporating N-gram context into the Swin Transformer, we overcome its limitation of neglecting larger regions during high-resolution image reconstruction due to its restricted receptive field. This enhancement expands the regions considered for pixel restoration, thereby improving the quality of high-resolution reconstructions. Our method increases context awareness across neighboring windows, leading to a -5.86\% improvement in BD-Rate over existing variable-rate learned image compression techniques. Additionally, our model improves the quality of regions of interest (ROI) in images, making it particularly beneficial for object-focused applications in fields such as manufacturing and industrial vision systems.
- Abstract(参考訳): 本稿では,学習画像圧縮のためのN-gramコンテキストベースのSwin変換器を提案する。
本手法は1つのモデルを用いて可変レート圧縮を実現する。
我々は,N-gramコンテキストをSwin Transformerに組み込むことで,その制限された受容野による高解像度画像再構成において,より大きな領域を無視する制限を克服する。
これにより、画素復元に考慮された領域が拡大し、高分解能再構成の品質が向上する。
提案手法は,既存の可変レート画像圧縮技術よりも,BD-Rateを5.86%向上させる。
さらに,画像の関心領域(ROI)の質を向上し,製造や産業ビジョンシステムといった分野におけるオブジェクト中心のアプリケーションに特に有益である。
関連論文リスト
- Enhancing Perception Quality in Remote Sensing Image Compression via Invertible Neural Network [10.427300958330816]
リモートセンシング画像をデコードして、特に低解像度で高い知覚品質を実現することは、依然として大きな課題である。
Invertible Neural Network-based Remote Sensor Image compression (INN-RSIC)法を提案する。
我々の INN-RSIC は、認識品質の観点から、既存の最先端のディープラーニングベースの画像圧縮手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-17T03:52:37Z) - JPEG Quantized Coefficient Recovery via DCT Domain Spatial-Frequential Transformer [45.134271969594614]
JPEG量子化係数回復のためのDCT領域空間周波数変換器(DCTransformer)を提案する。
提案するDCTransformerは,現在最先端のJPEGアーティファクト除去技術より優れている。
論文 参考訳(メタデータ) (2023-08-17T17:32:56Z) - Soft-IntroVAE for Continuous Latent space Image Super-Resolution [12.344557879284219]
連続潜時空間画像超解像(SVAE-SR)のためのソフトイントロVAEを提案する。
変分オートエンコーダにインスパイアされた連続潜時空間画像超解像(SVAE-SR)のためのソフトイントロVAEを提案する。
論文 参考訳(メタデータ) (2023-07-18T06:54:42Z) - ConvNeXt-ChARM: ConvNeXt-based Transform for Efficient Neural Image
Compression [18.05997169440533]
ConvNeXt-ChARMは,効率的なConvNeXtベースのトランスフォーメーションコーディングフレームワークである。
ConvNeXt-ChARMは、VVC参照エンコーダ(VTM-18.0)と最先端の学習画像圧縮手法であるSwinT-ChARMに対して、平均5.24%と1.22%と、一貫したBDレート(PSNR)の低下をもたらすことを示した。
論文 参考訳(メタデータ) (2023-07-12T11:45:54Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
生画像は、線形性や微細な量子化レベルなど、sRGB画像に対して明確な利点がある。
ストレージの要求が大きいため、一般ユーザからは広く採用されていない。
本稿では,メタデータとして,潜在空間におけるコンパクトな表現を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-21T06:59:07Z) - Accurate Image Restoration with Attention Retractable Transformer [50.05204240159985]
画像復元のためのアテンション・リトラクタブル・トランス (ART) を提案する。
ARTはネットワーク内の密集モジュールと疎開モジュールの両方を提示する。
画像超解像、デノナイジング、JPEG圧縮アーティファクト削減タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-04T07:35:01Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Deep Photo Cropper and Enhancer [65.11910918427296]
画像に埋め込まれた画像を収穫する新しいタイプの画像強調問題を提案する。
提案手法をディープ・フォト・クリーパーとディープ・イメージ・エンハンサーの2つのディープ・ネットワークに分割した。
フォトクロッパーネットワークでは,埋め込み画像の抽出に空間変換器を用いる。
フォトエンハンサーでは、埋め込み画像中の画素数を増やすために超解像を用いる。
論文 参考訳(メタデータ) (2020-08-03T03:50:20Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。