論文の概要: Partial Identification Approach to Counterfactual Fairness Assessment
- arxiv url: http://arxiv.org/abs/2510.00163v1
- Date: Tue, 30 Sep 2025 18:35:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.200857
- Title: Partial Identification Approach to Counterfactual Fairness Assessment
- Title(参考訳): 対実的公正度評価のための部分的同定手法
- Authors: Saeyoung Rho, Junzhe Zhang, Elias Bareinboim,
- Abstract要約: 未知の対実的公正度尺度を高い信頼性で有界化するためのベイズ的アプローチを導入する。
以上の結果から、人種をアフリカ系アメリカ人に転換する際のCompASスコアに対する肯定的な(不快な)効果と、若年から高齢に移行する際の否定的な(直接的な因果関係)効果が明らかとなった。
- 参考スコア(独自算出の注目度): 50.88100567472179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The wide adoption of AI decision-making systems in critical domains such as criminal justice, loan approval, and hiring processes has heightened concerns about algorithmic fairness. As we often only have access to the output of algorithms without insights into their internal mechanisms, it was natural to examine how decisions would alter when auxiliary sensitive attributes (such as race) change. This led the research community to come up with counterfactual fairness measures, but how to evaluate the measure from available data remains a challenging task. In many practical applications, the target counterfactual measure is not identifiable, i.e., it cannot be uniquely determined from the combination of quantitative data and qualitative knowledge. This paper addresses this challenge using partial identification, which derives informative bounds over counterfactual fairness measures from observational data. We introduce a Bayesian approach to bound unknown counterfactual fairness measures with high confidence. We demonstrate our algorithm on the COMPAS dataset, examining fairness in recidivism risk scores with respect to race, age, and sex. Our results reveal a positive (spurious) effect on the COMPAS score when changing race to African-American (from all others) and a negative (direct causal) effect when transitioning from young to old age.
- Abstract(参考訳): 刑事司法、ローン承認、雇用プロセスといった重要な領域におけるAI意思決定システムの普及により、アルゴリズムの公正性に対する懸念が高まっている。
内部メカニズムに関する洞察のないアルゴリズムの出力にのみアクセスすることが多いので、補助的な属性(例えばレース)が変化した場合、どのように決定が変わるかを調べるのは自然なことです。
この結果、研究コミュニティは反実的公正度尺度を策定したが、利用可能なデータから測定方法を評価することは難しい課題である。
多くの実践的応用において、対象の対実測度は識別できない、すなわち、量的データと定性的知識の組み合わせから一意に決定することはできない。
本稿では,観測データから対実的公正度尺度に対する情報的境界を導出する部分的識別を用いて,この問題に対処する。
未知の対実的公正度尺度を高い信頼性で有界化するためのベイズ的アプローチを導入する。
提案アルゴリズムをCompASデータセット上で実証し,人種,年齢,性別に対する偏見リスクスコアの公平性を検証した。
以上の結果から、人種をアフリカ系アメリカ人に転換する際のCompASスコアに対する肯定的な(不快な)効果と、若年から高齢に移行する際の否定的な(直接的な因果関係)効果が明らかとなった。
関連論文リスト
- Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing [0.0]
欧州連合の人工知能法は2024年8月1日に施行された。
リスクの高いAIアプリケーションは、厳格な透明性と公正な基準に従わなければならない。
本稿では,対実的公正性とピア比較戦略の強みを組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-08-05T15:35:34Z) - What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
強化学習問題では、エージェントはリターンを最大化しながら長期的な公正性を考慮する必要がある。
近年の研究では様々なフェアネスの概念が提案されているが、RL問題における不公平性がどのように生じるかは定かではない。
我々は、環境力学から生じる不平等を明示的に捉える、ダイナミックスフェアネスという新しい概念を導入する。
論文 参考訳(メタデータ) (2024-04-16T22:47:59Z) - Auditing Fairness under Unobserved Confounding [56.61738581796362]
意外なことに、リスクの高い人に対する治療率の有意義な限界を計算できることが示されています。
現実の多くの環境では、リスクの偏りのない見積を導き出すために、アロケーションの前にデータを持っているという事実を使用します。
論文 参考訳(メタデータ) (2024-03-18T21:09:06Z) - Counterpart Fairness -- Addressing Systematic between-group Differences in Fairness Evaluation [17.495053606192375]
機械学習を用いて意思決定を行う場合、アルゴリズム上の決定が公平であり、特定の個人やグループに対して差別的でないことを保証することが重要である。
既存のグループフェアネス手法は、人種や性別などの保護された変数によって規定されたグループ間で平等な結果を保証することを目的としている。
グループ間の系統的な差異が結果に重要な役割を果たす場合、これらの手法は非保護変数の影響を見逃す可能性がある。
論文 参考訳(メタデータ) (2023-05-29T15:41:12Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。