論文の概要: Does Bigger Mean Better? Comparitive Analysis of CNNs and Biomedical Vision Language Modles in Medical Diagnosis
- arxiv url: http://arxiv.org/abs/2510.00411v2
- Date: Thu, 02 Oct 2025 04:22:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:20.324925
- Title: Does Bigger Mean Better? Comparitive Analysis of CNNs and Biomedical Vision Language Modles in Medical Diagnosis
- Title(参考訳): 診断におけるCNNとバイオメディカルビジョン言語モドルの比較分析
- Authors: Ran Tong, Jiaqi Liu, Su Liu, Jiexi Xu, Lanruo Wang, Tong Wang,
- Abstract要約: 本稿では、教師付き軽量畳み込みニューラルネットワーク(CNN)とゼロショット医療ビジョンランゲージモデル(VLM)の比較分析を行う。
両症例とも,CNNは競争力の高いベースラインとして機能している。
検証セットの分類閾値を最適化することにより、両方のデータセット間でBiomedCLIPの性能が著しく向上する。
- 参考スコア(独自算出の注目度): 7.41395379449452
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The accurate interpretation of chest radiographs using automated methods is a critical task in medical imaging. This paper presents a comparative analysis between a supervised lightweight Convolutional Neural Network (CNN) and a state-of-the-art, zero-shot medical Vision-Language Model (VLM), BiomedCLIP, across two distinct diagnostic tasks: pneumonia detection on the PneumoniaMNIST benchmark and tuberculosis detection on the Shenzhen TB dataset. Our experiments show that supervised CNNs serve as highly competitive baselines in both cases. While the default zero-shot performance of the VLM is lower, we demonstrate that its potential can be unlocked via a simple yet crucial remedy: decision threshold calibration. By optimizing the classification threshold on a validation set, the performance of BiomedCLIP is significantly boosted across both datasets. For pneumonia detection, calibration enables the zero-shot VLM to achieve a superior F1-score of 0.8841, surpassing the supervised CNN's 0.8803. For tuberculosis detection, calibration dramatically improves the F1-score from 0.4812 to 0.7684, bringing it close to the supervised baseline's 0.7834. This work highlights a key insight: proper calibration is essential for leveraging the full diagnostic power of zero-shot VLMs, enabling them to match or even outperform efficient, task-specific supervised models.
- Abstract(参考訳): 自動撮影による胸部X線像の正確な解釈は, 医用画像における重要な課題である。
本稿では,CNNと最先端のゼロショット医療ビジョンランゲージモデル(VLM, BiomedCLIP)の比較分析を行い, 肺炎検出と深センTBデータセットの結核検出の2つの異なる診断課題について述べる。
両症例とも,CNNは競争力の高いベースラインとして機能している。
VLMのデフォルトのゼロショット性能は低いが、そのポテンシャルは単純だが決定しきい値のキャリブレーションによって解錠できることを実証する。
検証セットの分類閾値を最適化することにより、両方のデータセット間でBiomedCLIPの性能が著しく向上する。
肺炎検出のために、キャリブレーションによりゼロショットVLMは、監督されたCNNの0.8803よりも優れたF1スコア0.8841を達成することができる。
結核検出のために、キャリブレーションはF1スコアを0.4812から0.7684に劇的に改善し、監督されたベースラインの0.7834に近づいた。
適切なキャリブレーションはゼロショットVLMの完全な診断能力を活用するために不可欠であり、効率よくタスク固有の教師付きモデルにマッチしたり、性能を上回ったりすることができる。
関連論文リスト
- Automatic Cough Analysis for Non-Small Cell Lung Cancer Detection [33.37223681850477]
非小細胞肺癌(NSCLC)の早期発見は患者の予後改善に重要である。
本研究では,NSCLC患者と健常者との鑑別のためのスクリーニングツールとして,自動コークス分析の利用について検討する。
記録は、サポートベクタマシン(SVM)やXGBoostといった機械学習技術を用いて分析された。
論文 参考訳(メタデータ) (2025-07-25T11:30:22Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
本研究は、MIMIC-IVデータセットに基づく神経疾患患者を対象とした、ICUにおけるLOS予測のための複数のMLアプローチについて検討する。
評価されたモデルには、古典的MLアルゴリズム(K-Nearest Neighbors、Random Forest、XGBoost、CatBoost)とニューラルネットワーク(LSTM、BERT、テンポラルフュージョントランス)が含まれる。
論文 参考訳(メタデータ) (2025-05-23T14:06:42Z) - ThyroidEffi 1.0: A Cost-Effective System for High-Performance Multi-Class Thyroid Carcinoma Classification [0.0]
甲状腺FNAB画像分類のための深層学習システムを開発した。
Benign, Indeterminate/Suspicious, and Malignantの3つの主要なカテゴリは、生後治療を直接指導するものだ。
システムは1000ケースを30秒で処理し、広くアクセス可能なハードウェアの実現可能性を示した。
論文 参考訳(メタデータ) (2025-04-19T02:13:07Z) - Advancing Chronic Tuberculosis Diagnostics Using Vision-Language Models: A Multi modal Framework for Precision Analysis [0.0]
本研究では,自動結核検診(TB)を強化するビジョン・ランゲージ・モデル(VLM)を提案する。
胸部X線画像と臨床データを統合することにより,手動による解釈の課題に対処する。
このモデルでは、重要な慢性TBの病態を検出するための高精度(44%)とリコール(44%)が示された。
論文 参考訳(メタデータ) (2025-03-17T13:49:29Z) - MOZART: Ensembling Approach for COVID-19 Detection using Chest X-Ray Imagery [0.0]
新型コロナウイルス(COVID-19)が世界的なパンデミックを引き起こし、医療システムに悪影響を及ぼした。
従来の畳み込みニューラルネットワーク(CNN)は印象的な精度を実現している。
ウイルス検出を強化するアンサンブル学習手法であるMOZARTフレームワークを導入する。
論文 参考訳(メタデータ) (2024-10-11T21:02:58Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
コンピュータ支援診断は早期の肺結節の検出に役立ち、その後の結節の特徴づけを促進する。
MedSAMと呼ばれるSegment Anything Modelの変種を用いて肺結節をゼロショットでセグメント化するためのCADeを提案する。
また、放射能特徴のギャラリーを作成し、コントラスト学習を通じて画像と画像のペアを整列させることにより、良性/良性としての結節的特徴付けを行うCADxを提案する。
論文 参考訳(メタデータ) (2024-07-02T19:30:25Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。